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Preface

This material is prepared to make the reader strong in selected topics of Discrete
Mathematics which is absolutely essential for learning advanced subjects of Information
Technology. This is a course designed for first semester students of M.Sc Information
Technology curriculum. The material is also suitable for students enrolled in post graduate
studies in Computer Science, Information Science / Technology, Computer Applications.
Computers are being extensively used in daily life at all levels, for a variety of purposes and by
organizations to individuals. Certain mathematical topics related to design of computers,
algorithm design and applications of computer science are taught to students of Computer
Science, Information Science / Technology, Computer Applications in the first year of the
course. Discrete Mathematics for Computer Scientists may be a difficult course to teach and to
learn for several reasons. This is a hybrid course. It is Mathematics but most of its contents are
applications of Mathematics. The number of substantive and diverse topics covered in this course
is high. The whole course is organized into four modules and each with four units. Each unit lists
out a set of objectives. The reader is urged to identify and write answers to all questions at the
end of each unit so that learning is complete. Also the material is to be treated like notes, which
is not complete in itself. The reader should refer to original texts for all units for a thorough and

complete understanding. Content of each module is given in brief next.

Module-1: Mathematical logic is an age old subject and finds its application in the circuit design
of electronic computers. Sets are important structures from computer science point of view.
These two topics are discussed extensively with plenty of illustrations in this module. Truth
tables of simple and compound statements (using logic connectives on simple statements),
equivalence of logic formulas, tautology, contradiction, duality, normal forms are discussed in
the first two units of the module. Later two units focus on set theory. Set i§ a common concept
which is introduced right from high school. Representation of sets, operations on sets, laws of set
theory may be found in Part I in unit 3. Two primary methods of counting namely, permutation
and combiration, pigeon hole principle and induction are introduced in the last unit of this

module.



Module-2: This module is about relations and an important type called recurrence relation.
Representation of relation on sets in the form of graph and matrix, recurrence relations and the
methods of finding explicit solutions to these are discussed in this module. Also functions which
are particular relations are introduced in this module. Several supporting examples clear the

definition and concepts to the reader.

Module-3: In this module, another interesting topic of Discrete Mathematics namely Graph
Theory is elaborated. Graph theory has lots of applications in a variety of fields. Beginning from
introduction, representation, some special sub graphs like paths, walks and circuits, as well as
advanced concepts like planarity, coloring, matching problems are discussed in length in this

module. Again as in the previous modules concepts are introduced with plenty of illustrations.

Module-4: Algebraic structures are not only important for Mathematicians. Computer Science is
incomplete without knowledge of groups, rings and fields. Applications of these areas in
Computer Science are numerous. Algebraic structures are introduced in this module. Monoid,
semi group, group, sub group, normal group, are discussed in great detail here. A very important
of application of group structure namely, encoding and decoding of information is outlined in the

end. Also other structures like rings, fields are dealt with superficially in this module.

We have kept in mind the difficulty of self study, in particular topics in mathematics, and
hence we have tried to make discussions simple and supported the concepts with numerous
examples. As said in the beginning of the preface, it is important that the reader should go
through original text(s) for a full appreciation of the subject and should address all questions

given at the end of the units.
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UNIT -1: MATHEMATICAL LOGIC - PART I

Structure
1.0 Objectives
1.1 Introduction
1.2 Notation
1.3 Logical connectives
1.4 Well formed formulﬁs- WEFF
1.5 Tautology and contradiction
1.6 Summary
1.7 Keywords
1.8 Questions

1.9 References

1.0 OBJECTIVES

After studying this unit, you will be able to

v" Understand basic concepts of logic
v" Understand simple and compound statements using connectives
v" Compute truth values of compound statements

v"  Explain the importance of WFF, tautology & logical implication

1.1 INTRODUCTION

Logic is the discipline that deals with the methods of reasoning. On an elementary level,
logic provides rules and techniques to determine whether a given statement (argumer ) is valid.
Logical reasoning is used in mathematics to prove theorems, and in computer science to verify
the correctness of programs. Logic has its applications in various other fields such as natural
science, social science and physical science. Logic is extensively used in design of digital

circuits. Here we discuss some.basics of logic.



1.2 NOTATIONS

The fundamental objects we work with in arithmetic are numbers. In a similar way, the
fundamental objects in logic are propositions .

Definition

A proposition is a statement (declaration) which, in a given context, can be said to be either true or
false but not both.

Propositions are usually denoted by small letters such as p, g, 1, s,...

Examples

1. The following statements are propositions.

(a) I like logic. (b) 3+4=5

2. The following sentences are not propositions.
(a)Let me go! (Exclamation)
(b) x+3=5 (x is unknown)
Definition -Truth value

The truth or the falsity of a proposition is called its truth value. If a proposition is true, we
will indicate its truth value by the symbol T and if it is false by the symbol F.

Definition - Truth Table

The table showing the truth values of a statement is called a truth table. It is a compact way of
listing symbols to show all possible truth values for a set of sentences.

Examples

If we denote the proposition "The number 3 is a prime number" by p, then the truth value of p is
T. Similarly, if we denote the proposition "Every rectangle is a square" by q, then the truth value of
qis F.

Statements can be connected by the words like ‘not’, ‘and’, ‘or’, ‘conditional’, ‘bi-conditional’ etc.
These words are known as logical connectives. The statements which do not contain any of the
connectives are called atomic statements or simple statements. For example the two statements p and g
in the above example are simple statements. The common connectives are: ‘negation’, ‘and’, ‘or’, ‘if
then’, ‘if and only if’ and ‘equivalence’. We use the following notations to the corresponding

connections.



Connectives Notations

Negation ~

and A

or \

if-then -

if and if only if ©
equivalence = (or )

1.3 LOGICAL CONNECTIVES

Definition - Negatiorn (~)

A proposition obtained by inserting the word ‘not’ at an appropriate place in a given proposition
is called the negation of the given proposition. The negation of a proposition p is denoted by ~ p
read not p), the symbol ‘~ denoting the word ‘not’.

Examples

1. Let the propusition "2 is a prime number” be denoted by p. i.e., p: 2 is a prime number.

Then ~ p: 2 is not a prime number.

2. q: Every rectangle is a square. Then ~q: Not every rectangle is a square.

Following is the truth table for negation.

P P
E
F T

In the above example p is true and hence ~ p is false and q is false and therefore ~q is true. .
Definition — Conjunction (A)

Conjunction is compound statement formed by using the word ‘and’ to combine two simple
sentences. If p and q represent two simple statements, the conjunction of p and q is written
symbolicaliyas p Aq

Examples

Consider the following statements:
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1. p: Ashok likes Mathematics and q: Deepa likes Science. Then the conjunction of these two

statements is

p A q: Ashek likes Mathematics and Deepa likes Science.

2. p: Ram goes by plane and q: Sam goes by car. Then the conjunction of these two

statements is

pA q: Ram goes by plane and Sam goes by car.

Truth table for conjunctive statements is as follows:

P q PAq
T, T T
T : 4 F
F T o
3 ) EF

The conjunction of two statements is true only when both the statements are true.

Definition — Disjunction (v)

Disjunction is compound statement formed by using the word ‘or’ to combine two simple

sentences. If p and q represent two simple statements, the disjunction of p and g is written

symbolicallyas p vq

Examples

Consider the following statements:
1. p:Itis summer in India, q: It is winter in Australia. The disjunction of the two statements is
p v q: It is summer in India or it is winter in Australia
2. p: It will rain, q: It will be hot."The disjunction of these two statements is

p v q: It will rain or it will be hot.

Truth table for disjunctive statements is as follows:

pPvq

T T o= =

mf 1| | 8| e

s | N I

11




The disjunction of two statements is true when one of the statements is true.

Definition — Conditional (—)

A compound proposition obtained by combining two given propositions by using the words ‘if ’
and ‘then’ at appropriate places is called a conditional proposition or just a conditional.
Examples

1. Let p: I'study well. q: I will get distinction.

Then, p — q: If I study well, then I will get distinction.
2. Let p: Ramya is interested in discrete mathematics. gq: Ramya will find a good job.

Then, p — q: If Ramya is interested in discrete mathematics then Ramya will find a good
job.
A conditional is sometimes called an implication. Thus, we may also read the symbol for conditjona!
p — q as p implies q. The antecedeht usually follows the word ‘if’ and the consequent usually

follows the word ‘then’. Given below is the truth table for condition statement or implication.

P q P— q
T T T
T P P
I T T
R B ¥ 4

The implication is false when antecedent is true but not the consequent.

Definition — Bi conditional (<)

Let p and q be two propositions. Then the conjunction of the conditionals p — q and q — p is
called the bi conditional of p and q, it is denoted by p «» q. Thus p <> q is the same as (p — q) A (q
— p). As such p < q is read as ‘if p then q and if q then p’. The truth table for bi conditional

statement is given by,

P q P—7q |9 P |P(
T T T T

T F F T ¥

F & T P F

F ¥ sk T i

12



Examples
1. 242 =4 if and only if 3+5 =38
2. Bangalore is cosmopolitan city if and only if people of Bangalore are from all parts of
India.
3. p: You can take the train. q: You buy a ticket. Then the bi conditional statement is,

p < q: You can take the train if and only if you buy the ticket.
Definition — Converse

If p— qis a statement then qg— p is called converse and the truth table for converse is as follows:

P q e |4 p
g b T 14 T
T F F T
F T T F
B F T i &

Definition — Inverse

If p — qis a statement then ~p— ~q is called inverse and the truth table for inverse is as follows:

p q P —-q =Ry
g 8 T F F x
T B F d } T
{2 T T F F
F L5 T T i 3

Definition — Contra positive

If p— qis a statement then ~q— ~p is called contra positive and the truth table for contra positive

is as follows:

13



P q ~p ~q ] —+ =g

T i F F T

T F F T F

F T 9t F T ]
F F 3§ T s R

Example

Let p: It’s —6"and q: It's cold.

The converse of p — q is @ — p: If it is cold, then it’s 6"

The inverse of p — q is ~p — ~q: If'it is not ~6" then it is not cold.
Contra positive of p — q is ~q — ~p: if it is not cold then it is not -6

Various types of sentences and propositions can be summarized using a diagram below:

Sentence
interrogative
eclarative imperative
exclamatory
proposition Non proposition
Simple Compound
1 Caonjunction
Disjunction Conditional Bicontional

Inclusive Exclusive /\\
Contrapositive

Implication Converse Inversive

Definition - Other Connectives
We now introduce the connectives NAND, NOR which have useful applications in the design of

computers.
The word NAND is a combination of “NOT"” and “AND” where NOT stands for negation and AND

stands for the conjunction. It is denoted by the symbol 1.

14



If p and q are two propositions then p 1 q is nothing but ~ (p A q). The truth table of NAND is

given by,
p q pAQ PTq
31 T ] F
T F F T
F i F T
I3 E F T

Connective NOR is a combination of "NOT" and "OR", where NOT stands for negation and OR
stands for the disjunction. The connective NOR is denoted by the symbol |, and is called joint p | q is
read as "Neither p nor q". The truth table of NOR is given by,

3 P q Pvq plq
T T T F
T F T F
F T T F
F F F T

1.4 WELL FORMED FORMULAS (WFF)

A statement formula contains one or more simple statements and some connectives. If p
and q are any two statements, then p vV ¢, p A~ p A q are some statement formulas derived
from the statements variables p and q, where p and q are called components of the statement
formulas. A statement formula has no truth value. It is only when the statement variables
in a statement formula are replaced by definite statement that we get a statement, which
has a truth value that depends upon the truth values of its statements used in replacing the
variables. A statement formula is a string consisting of variables, parentheses and connective symbols. A

statement formula is called a Well formed formulas (WFF) if it can be generated by the following

rules:

1. A statement variable p standing alone is a well formed formula.

13
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3. If p and g are well formed formulas, then p A q, p v q, p — q and p <> g are well formed
formulas.
3. A string of symbols is a well formed if and only if it is obtained by finitely many

applications of the rules 1, 2.

According to the above recursion definition of a well formed formula, the formulas, ~ (p v @), (~p A
q), p — (p A q) are well formed formulas.

A statement formula is not a statement and has no truth values. But if we substitute
definite statements in place of variables in a given formula we get a statement. The truth value of
this resulting statement depends upon the truth values of the statement substituted for the variables,
which appears as one of the entries in the final column of the truth table constructed. Therefore, the
truth value of a well formed formula is the summary of truth values of the resulting statements for all
possible assignments of truth values of the variables appearing in the formula. The final column entries
of the truth table of a well formed formula give the truth value of the formulas.

Examples

1. pv ~qis a well formed formula. The truth table of this formula is:

p q ~q PVv—q
i T o T
T F T T
F T F F
F E T 4k

For instance, let p: It is summer and q: It is cool.
Suppose it is month of March in Bangalore then p is true and q is false and the truth value of p
v~ q from the table (row 2) is T.
Suppose it is month of November in Bangalore then p is false and q is true and from row 3, the
WEFF p v~ q is false.
Note that as said above the truth value of component statements decide the truth value of the
given WFF.

2. ~(p Aq) vris a well formed formula.
The truth table of this formula is given in the table below.

16
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p q J PAq ~pArq) |~(pAqvr
T B i T F T
T ] F T F s
¥ F T F T T
i i F F F T T
F T T F s T
F T F F T F
F F i F T 4y
F F F F i F

If p, q and r are T, F, T then from the table it is evident that the WFF ~(p Aq) vris T (refer row
3). If truth values of components p, q, r are F, F, T then the truth value of WFF ~(p A q) vris T

(refer row 7 of the table).

1.5 TAUTOLOGY AND CONTRADICTION

Propositional logic is to study of propositions and the propositional connectives. It is
the study not only of one particularly interpretation of a formula but also of what can be
deduced about all interpretations of a formula of particular interest are those formulas that
are true "by virtue of pure logic". Here we introduce the concept of tautology and contradiction. A
tautology is a WFF which is true independent of the truth values of its components. A contradiction

is a WFF which is false independent of the truth values of its components.

Examples —Tautologies
L par(p—a)—g

Examination of the truth table of the statement reveals that WFF is always true independent of the

status of its components.

17



P q P—q PAP—q |pA(P——(q
T T T T
T F F F T
F iy T F i
F F T F T

2. (p—q) < (~p v q)is a tautology. Truth table of this compound statement is given here.

p q P—q |-p ~pvq =g (~pv g
T T i F T T
T F F F F T
F T i T T T
F F ! iy T T

Examples —Contradictions

1. (p A q) A~ p is a contradiction. We see from its truth table that we get the truth value of

this WFF to be false irrespective of the component truth values.

P q pAq | ~P (PAQA~P
T 12 T F F
i F F F F
F T F T F
F F F T F

WEF that are neither tautology nor contradiction are called contingency. All well formed

formulas in sections 1.3 and 1.4 are contingencies.

18



1.6 SUMMARY

In this unit mathematical logic is introduced. In section 1.1 some applications of this

theory is briefed. Notations for understanding of the discussion are discussed in the next section.

Section 1.3 gives a detailed account of all operations of the mathematical logic. The section next

we present WFF and then discuss the concept of tautology and contradiction, which are WFF

always true and always false.

1.7 KEYWORDS

Mathematical logic, Logical operators, Well formed formulas, Tautology, Contradiction

1.8 QUESTIONS

SR LD B

Mention some statements whose truth values are true / false.

Define and write the truth tables of all operators.

Construct truth tables for pv~q, (pvq)v-p, pv(qar), ~pVv(gar).

What is bi conditional statement and find the truth table of such a statement.

Define well formed formulas and give example statements that are WFF and those that
are not.

Construct truth table for the bi conditional statement ~(pvq) <> (~pA~q).

What is tautology, contradicﬁon and contingency?

Give some WFF that are tautologies and contradictions.

1.9 REFERENCES

. J.P.Tremblay, R.Manohar, Discrete Mathematical Structures with applications to

Computer Science, TATA McGRAW-HILL
Dr. N.G.Goudru, Discrete Mathematical Structures, Himalaya Publishing House
Bernard Kolman, Robert C. Busby, Sharon Cutler Ross, Discrete Mathematical

Structures, PEARSON Education
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UNIT -2: MATHEMATICAL LOGIC - PART II

Structure
2.0 Objectives
2.1 Equivalence
2.2 Tautological implications
2.3 Duality
2.4 Normal forms
2.5 Inference
2.6 Summary
2.7 Keywords

2.8 Questions

2.9 References

2.0 OBJECTIVES

When you have gone through this unit, you will be able to

v" Find out when two compound statements are equivalent
v" Understand the concept of duality

v Work out normal forms for any statement

v’

Make new inferences from a set of premises

2.1 EQUIVALENCE

Two propositions p and q are said to be logically equivalent or simply equivalent if p — q
is a tautology. Let p and q be two well formed formulas having n components. The statement

formulas p and q are said to be equivalent if they have the same truth values for-all 2"

combinations of individual n components. Equivalence is denoted by <« or =.

Examples

L. —p=p

20



Let us examine the truth table of both expressions.

P ~P ~P
T F T
F T

The truth values of p and ~~p are the same. Hence they are equivalent.

2. pv-p =qv—q
Truth tables of both expressions given below imply that both expressions are equivalent.

p ~p pv ~p q ~-q qv ~q
T F T g F it
P T T F T T

3. (p v~p)vq = q are equivalent and truth table of both expressions are one and the same.

~p pA ~p q (p A ~p)vq
T F F T T
F T F F F

Some equivalent formulas are given here.
1. Idempotent laws: ava=a | (b)arna=a
2. Commutative laws: (a)pvq=qvp (b)pAq=qAp
3. Associative laws: (a) pAg)AT=pA(qar) (B)(pvq Vv r=pv (qQV 1)
4. Distributive laws: (a)pv (@A =(ppvAa(Pv DB pA(@v=(pa qQVv(pAr)
5. Identity laws: (a) (i) pv f=p () pv t=t (b)) paf=f (i)pa t=p
6. Complement laws: (a) () pv f=p (ii))pv~p=t
(b)) pa ~p=f(ii))~t=f,~f=t
7. De-Morgan’s laws: (a) ~ (pAq)=~pv~q (b)~(pvq =~par~q
where t and f are used to denote the variables which are restricted to the truth

values true and false respectively.

21



Proof for De Morgan’s laws

P q pvaq|~(pvae |~p [~q9 |~pA—q
T T T F F F F
T F T F F T F
F T iy F T F F
F F F T 1 T T
p q pAq|~(PpAg |~ |~q9 |~p Vv
T T T F F F F
T F F T F [T T
F T F T T F T
F F F T T T r

Another important equivalence very useful in proving theorems is (p— @) =~p v q

p q P—q (-p P NG
T T T F T
T F F F F
F T £ i T T
F F T ¥ 3 T

Some more equivalence formulas with three prepositions are given here.
(i) a—(bve)= (a—+-b)v (a—c¢)
(i1) (a—b)A(c—Db)=(avc)—Db
(iii)  (~pA(~qvr)Vv(qAn) vV (pAr)=r
(iv) ((avb)a ~(~aa (~b v~c))) v ((~aa~b) v (~a A~c)) is tautology
The equivalence of (i) and (ii) is proved using truth tables. Equivalence can a'so be shown using

simplification. This is how (iii) and (iv) are solved.

22



Truth table for equivalence of (i)

(a—b) v

(a—¢)

a=rC

a—b

a— (bv¢)

bve

Truth table for equivalence of (ii)

(ave)—

av e

(a—b)

Alc— b)

c—b

a—b

23



Equivalence of (iii) by simplification:
Solution:

(~p A(=gAT)) v (g AT) v (PAT)

= ((pA- AN V(QAD) V (PAT) Associative law

=(~(pvgAr) v((qVvp) AT) | e Morgan’s law and distributive law
=(~(pvar) v((pvq) A1) &mutative law

=(~(pvq v (pva)Ar Distributive law

=TAr (~(pvq v (pvq))is tautology

r
Equivalence of (iv) by simplification:
Solution:

Letx =((avb)a ~(~aA (~b v~0)))

=(avb)a ~(~an(~(b AC)) De Morgan’s law

=(avb)a (av(b Ac)) De Morgan and complement law
= (avb)a (avb)a (avec) Distributive law

= (avb)a (ave) ...(1) Idempotent law

Let y = ((~an~b) v (~a A~C))

=~(avb) v ~(awvc) De Morgan’s law
= ~((av b) A (avc)) De Morgan’s law
= ~x (from (1))

Now (iv)issameasx vy =xv~x =T
Thus given statement is a tautology.

Logic problems can also be solved by contradiction. Here are some examples. The proof
procedure is called proof by refutation.

(i) Let k* be an odd integer. Show that k is odd.

Solution:
Assume contrary what has to be proved. Assume k to be even. Let k=2c. Then k* = 4¢* = 2(2c?).
That is k* even. Thus there is contradiction to given statement: k* odd integer. The contradiction

is due to the assumption that k is even. Thus the assumption is wrong. Hence k is odd.

24



(ii) Prove that V2 is irrational.
Solution:
Assume V2 is rational. Suppose that there elitists integers p and q so that V2 = p/q (here pand q
do not have a common factor).
Squaring the above equation we get 2 =p2/q2.
That is, p° = 2 q°. Hence p’is even. Let p=2k. Then p* = 4k°=2 q°. Thus Q¢ =2K.
Both and are even means that p and q are even. Thus p and q have a common factor of 2. This
contradicts our assumption .Thus our assumption that V2 is rational is wrong. That isV2 is

irrational.

2.2 TAUTOLOGICAL IMPLICATIONS

Definition

Let p and q be two statements. The statement p is said to tautologically imply q if and only if
p— q is a tautology. The tautological iniplication is represented as p = q and read as “p implies q”.

We now give some simple tautological implications.
Examples

(i) (anb)=>a
(i1) (aAnb)=(a—b)
(iii) a=>(a—b)

(iv)  (a— (b—c)) = ((a—b) —(a— )

Truth table for (i)
a b anb |(aab)—a
T T 3 T
f b F T
P G T T
F ¥ T X
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Truth table for (ii)

(aanb)—

(a—b)

a—b

aAnb

Truth table for (iii)

a—(b—a)

b—a

Truth table for (iv)

u—v

y—z

a—C

a—b

a— X

b —c
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23 DUALITY

Definition

Let p and p’ be two formulas. If p can be obtained from p’ or if p’ can be obtained from p by
replacing A by v, v by A, T by F and F by T, then the statements p and p’ are called dual
statements.

Examples

Dual of the following statements are:
(i) (avb)a(cvd)
(ii)) (a Ab)VT
(iii) ~(avb) A (av~(ba~c))
(iv) (@ Vvaar

Solution:

Changing A by v, v by A, T by Fand F by T we get the dual statements as follows:
(1) (aab)v(cad)
(i) (a vb) AF
(iii) ~(a Ab) v(a A~(b v~c))
(iv) (pAqQvr

2.4 NORMAL FORMS

Although two formulas may be logically equivalent, one may be "easier" for someone to
understand or to manipulate. It may be fairly obvious that one formula is a tautology but quite
difficult to conclude that from the other form of the same formula. Decision of tautology or
contradiction using logic table is difficult because a formula with n components contains 2" rows. In
this section, we discuss two special forms or representations for formulas logically equivalent to a
given formula. These forms are disjunctive and conjunctive normal forms. If the formula is
expressed as sequence of elementary statements connected by A (this form is called conjunctive
normal form) then when of the statement is false then compound statement is false (given statement is

contradiction). On the other hand if the compound is expressed as composition of simple statements
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connected only by v (this form is called disjunctive normal form) then if one of the statement is true
then the compound statement is true (given statement is tautology).

Disjunctive Normal Form: Consider the following two formulas,

¢=(p—(qvr))<—(q—p) and
Y=(PAQDV(PATA~Q)V(~PA~Q)

The truth table for ¢ and y would show that these two formulas are logically €quivalent.
By some measures, y is more complicated. For example ¢ has four propositional connectives,
whereas  has five connectives. Nevertheless, many people find y to be far easier to understand.

The formula y explicitly lists three cases in which the formula is true.

1. p and q are both T.

2.pandrare T and qis F.

3. p and q are both F.
For all other interpretation of p, q and r the truth value of y is F. It is not nearly so
obvious what ¢ "says". Although ¢ is shorter, it is much more complex.
A formula like y that is just a list of cases that make the formula have a truth value of T
is called a disjunctive normal form (DNF). Each of the three cases (p A q), (pA ~ q A 1) and
(~ pA ~ q) is called a term. One might think of each term as -describing single case. The
entire disjunctive normal form formula is just a disjunction of terms that make the formula T.
One  might think of each term as  describing single case.  The
entire disjunctive normal form formula is just a disjunction of terms that make the formula T.
(The words term and disjunctive normal form will be defined formally below).
The difference in comprehensibility is even more extreme if the formula ¢ is negated. The
formula ~ ((p — (q v 1)) <> (q — p)) is logically equivalent to the disjunctive normal form
formula (~ p AQ) V(pA ~ ga ~1). The disjunctive-normal form is a disjunction of only two terms,
which makes it particularly easy to understand.

Definition
Let p be a proposition letter. Then, p is positive literal, and ~ p is a negative literal. A literal is

a positive literal or a negative literal.
Definition

Let A1, 2. Am be a set of m literals with m is a natural number (positive integer). A conjunctive
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normal form (CNF) is the conjunction A; A Ay A...A Ay, of m literals. A formula ¢ is in DNF if it is
a disjunction @, v, v...v@y of k terms where k is a natural number.

The disjunction of zero formulas is F. The conjunction of zero formulas is T. This is
analogous to defining the sum of zero numbers to be zero and the product of zero numbers to be 1.
For example, the formula (a Ab A ¢) v (~aAn ~ba ~c) v (an ~c A q) is in disjunctive normal
form. (a Ab A c)is a term. As another example consider T. It is conjunction of zero literals.(a A b
A c)is in conjunctive normal form.

We now focus on conversion of a given statement to DNF or CNF. We first make a truth
table of the given compound statement. We then identify the compound statements for which the

final formula is T. Now the given statement is disjunction of all these compound statements.
Example
Disjunctive normal form of v = (~ (p — q)) — (qa~1)

Truth table of the given expression is as follows:

P q r (~(P—q)— (qa~1)
T T J & T
(s y F T
T F T F
T F F F
F T T T
F E F T
F F T T
F F F o

In the table above, all rows that result in T for the final statement is in bold font. Now the DNF is

collection of all compound statements corresponding to these rows connected by v given by,

(p AqQ AT) V(PA gA~T) V (=PA QA T) V (=P AQ A~T) V (=p A~qQ AT) V (=pA ~q ;f\- r).
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To convert a given statement to CNF we negate the statement and find the truth table. Now
equivalent conjunctive normal form is found from those compound statements which has T in the

table in the last (corresponding to given statement). Consider the same example above namely, the
expression: (~(p — q)) — (qa~1)
Now let @ be the negation of this statement. That is ¢ = ~((~ (p — q)) — (qA~ 1)). The truth

table of ¢ is as given below.

L |

~(~(p—=q)— @na~T1)

M I I
IR TN
I I
||| o == | o

DNF of the given statement is ~ ((p A~q AT)V (p A ~q A ~1)). Push ~ inside. We then get

(~(pArgqAaD)A(~p A~qA-T)) De Morgan’s law
=(~pvqva~1)A (=p v qvr) (CNF) De Morgan’s law
2.5 INFERENCE

In mathematical logic, assumptions or axioms or hypotheses are called premises.
Inference is based on premises. A number of premises lead to conclusion (opinion). The process
of arriving at conclusions is called inference. Inference can be made using logic table.

Inference using table

Let a and b be two statements formulas. Suppose b is the conclusion based on the premise a.
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Then b is valid conclusion if and only if a — b is a tautology. It is called a implies b and
denoted by a = b.
Conclusion
Let py, p2, .-.pa be n premises. Conclusion c is arrived at if (pi. p2 A...Apa) — C 18 5tautology.
This is denoted by (piA P2 A...APa) = C. '
Examples
(1) Show that premise q leads to a conclusion pv q >
(i)  Determine whether b can be concluded from the premises p;: a — b, p2: a and
from the premises p3: a — b, ps: ~a

Solution:

(i) Find the truth table of ¢ — (p vq)

P q pva |9—(VQ
T i I i
T F T T
F i T T
F E F T

As q — (p vq) is tautology, the premise q implies (p vq).
(ii) Find the truth table of (p; A p2) — b

a b a—b Pis P2 (Piap2) —b
P1

2 T [T T T

T F F F T

= T F

= F T F T

As (piA p2) —b is tautology, the premise p;, p2leads to the conclusion b.

(iti)  Find the truth table of (p3 A ps) — b
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a b a—b ~a (p3a pa) (p3a ps) —b
P3 P4

T T T F F

T F F F T

F i T T T

- F T T T F

As (p3. ps) —b is not tautology, ps, psdoes not lead to conclusion b.

2.6 SUMMARY

In this unit concepts like equivalence of WFFs, tautological implication, duality of WFF,
two important normal forms namely disjunctive and conjunctive forms and finally inference
process given some set of premises are discussed in various sections, in detail with several

examples.

2.7 KEYWORDS

Equivalence of two statements, Tautological implication, Disjunctive normal form, Conjunctive

normal form, Dual of WFF, Inference principles

2.8 QUESTIONS

1. Define equivalence.

State all equivalence laws.

Show that ~(a «<»b) = (a vb) A~ (a Ab)

What do you mean by tautological implication? Give examples.

What is dual of a statement? Provide examples.

N AU LU e

Define two normal forms. How do they help in finding if a statement is true or false?
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7. How do you find the normal forms?

8. Find the two normal forms of ~(av b) <> (a vb) and ~(p— r)v (g« p)

9. Explain the process of inference and conclusion.
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UNIT -3: SET THEORY- PART 1

Structure
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3.3 Set Types
3.4 Representation of Sets
3.5 Operations on Sets
3.5.1 Properties of set operations
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3.7 Induction
3.8 Summary
3.9 Keywords
3.10 Questions

3.11 References

3.0 OBJECTIVES

When you have learnt the contents of this unit, you will be able to

v" Understand the different types of sets
v Do simple problems using set operators

v Appreciate the power of induction principle in solving problems

3.1 INTRODUCTION

Set theory is being used in various fields of science and engineering. The main purpose of
set theory is to study the importance of discrete objects and relationships among them. This unit

deals with different types of sets, set operations and principle of induction.
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3.2 BASICS

Definition-Set
A set may be viewed as a collection of objects, the elements or members of the set. We

will ordinarily use capital letters, A,B,X,Y,...., to denote sets, and lowercase letters, a,b,x,y,...,
to denote elements of sets. The statement “p is an element of A,” or, equivalently, “p belongs to
A," is written as p € A. The negation of p € A is written as p € A.

Examples
1. A={Students of first semester M.Sc in KSOU}

Each student is an element of set A.

2. B={1,2,3,5,7} or B={set of all positive integers that are prime and < 10}

1,2, 3,5, 7are members of the set B.i.e., 1 1 B,20B ...

3. C={1,2,3,x,y,z},Nowle C,ze C,5¢ C.

4. D=Letters of the word BANGALORE or D={B, A, N, G, L, O, R, E}
Observe that letter A is to be listed only once in the set.

All these are finite sets. Cardinality of a set is number of elements in the set. For instance,
cardinalities of sets A, B, C and D are:
1. Number of students in first semester M.Sc of KSOU.
2.5
3.6
4, 8
Representation of a set
Sometimes it is inconvenient or impossible to mention individual elements of the set.
Then we state the property which characterizes the elements of the set. The sets A and D in
the above example are represented by the property of their elements. More examples of this
type are given here.
Examples
1. E={x:x is an integer, x>0)
Which reads “E is the set of x such that x is an integer and x is greater than 0,” denotes

the set E whose elements are the positive integers. A letter, usually x, is used to denote a
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typical member of the set; the colon is read as “such that” and the comma as “and”.

2. F={x:xis aletter in the English alphabet, x is a vowel} or F={a, e, i, 0, u}

3 G={x: x2-3x+2=0}. In other words, G consists of those numbers which are solutions of
the equation x>-3x+2=0, sometimes called the solution set of the given equation. Since
the solution of the equation are 1 and 2, we could also write G={1, 2}.

4, A={ x: x2—3x+2=0}, B={2,1} and C={1,2,2,1,6/3}. Then A=B=C. Observe that a set
does not depend on the way in which its elements are displayed. A set remains the same
if its elements are repeated or rearranged.

Even if we can list the elements of a set, it may not be practical to do so. For example, we
would not list the members of set of people born in the world during the year 1976 although
theoretically it is possible to compile such a list. That is, we describe a set by listing its elements
only if the set contains a few elements; otherwise we describe a set by the property which
characterizes its elements.

The fact that we can describe a set in terms of a property is formally stated as the principle of

abstraction.

3.3SET TYPES

In section 3.2 we discussed some examples of sets, some of these finite, (A, B, C, D)

and some infinite (E). We here discuss more types of sets.
Countable Set

If we can count elements of a set (equivalently if elements of a set are discrete) then
the set is countable. All sets in the examples of previous section are countable. Note that

countable set can also be infinite (E).

Uncountable Set

If the elements of a set cannot be enumerated, then the set is uncountable. For
instance, the set of real numbers in the interval (1, 10) is an uncountable set.
Universal Set

In the application of the theory of sets, the members of all sets under investigation

usually belong to some fixed large set called the universal set or universe of discourse. For
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example, in plane geometry, the universal set consists of all the points in the plane; and in
human population studies the universal set consists of all the people in the world. We will

let the symbol U to denote the universal set unless otherwise stated or implied.
Empty Set

For a given set U and a property P, there may not be any elements of U which have
property P. For example the set '

S={x: x is positive integer, x’=3}
has no elements, since no positive integer has the required property.
The set with no elements is called the empty set or null set and is denoted by @.
Subsets

If every element of a set A is also an element of a set B, then A is called a subset of
B. We also say that A is contained in B or B contains A. This relation is written as:

AcCcB orBD A

If A is not a subset of B, i.e., if at least one element of A does not belong to B, we write

AZcCBorBDA
Examples

1. Consider the sets A={1, 3, 4, 5, 8, 9} B={l, 2, 3, 5, 7} C={1, 5} Then
C c A andC < B since 1 and 5, the elements of C, are also members of A and B.
But I & A since some of its elements, e.g. 2 and 7 do not belong to A. Furthermore,
since the elements of A, B and C must also belong to the universal set U, we have
that U must at least contain the set {1, 2, 3,4, 5, 7, 8, 9}.

2. Some sets of numbers occur very often and so we use special symbols for them.

Unless otherwise specified, we will let:

N=the set of positive integers: 1, 2, 3,...
Z=the set of integers: ...,-2,-1,0, 1, 2,...
Q=the set of rational numbers
R=the set of real numbers

The above sets are related as follows:

NcZccR

3. The set E={2,4,6} is a subset of the set F={6,2,4}, since each number 2.4 and 6

belonging to E also belongs to F. In fact, E=F. In a similar manner it can be shown

3



that every set is a subset of itself.
Every set A is a subset of the universal set U since, by definition all the members of
A belong to U. Also the empty set @ is a subset of A.
As noted above, every set is a subset of itself since, trivially the elements of A belong
to A. If every element of a set A belongs to a set B, and every element of B belongs
to a set C, then clearly, every element of A belongs to C. In other words, if AcB and
B<C, then A<C.
If AcB and B cA, then A and B have the same elements, i.e. A=B. Conversely, if
A=B, then AcB and B <A since every set is a subset of itself.

We state the above results formally:

Theorem 3.1

(i) For any set A, we have @ c A cU

(i1) For any set A, we have AcA

(i11) If AcB and BcC, then AcC

(iv) A=B if and only if A «B and BcA

Remark: If ACB, it is still possible that A=B. Some authors write ASB to indicate that A is

a subset of B, and write A<B to indicate that A is a subset of B but is not equal to B.

Definition - Power Set
If A is a set, the set of all subsets of A is called the power set of A. It is denoted by P (A).

Examples
1. Let A={ab,c}
Power set, P(A)={ @, {a},{b},{c}.{a, b},{b, c},{a, c},{a, b, c}}.
2. Find (i) P(A), (ii) Cardinality of A, (iii) |[P(A)|, for the sets (a) A={3,7,9},
(b)rA={a e, 1,0},
Solution
(a) A={3,7,9}
(i) Power set, P(A)={ 9, {3},{7}.{9}, {3,7},{7.9}.{3.9},{3,7,9}}
(ii) Cardinality of A, |A|=3.

(iii) Cardinality of P(A)=|P(A)|=8.
(b) A={a, e, i, 0}
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(i) P(A)={ 9, {a},{e}.{i}.{o}.{a, e},{a,i},{a, 0}.{e, i}.{e, 0},{i, 0},
{a, e, i}.{a, e, 0},{e,1,0},{a i, 0}.{a e, i, 0}}.

(ii) |A] =4.

(iii) |P (A)|=16.

3.4 REPRESENTATION OF SETS

Venn Diagrams

A Venn diagram is a pictorial representation of sets by set of points in the plane. The universal
set U is represented by the interior of a rectangle, and the other sets are represented by disks lying
within the rectangle. If AcB, then the disk representing A will be entirely within the disk
representing B as in fig 3.1(a). If A and B are disjoint, i.e., have no elements in common,

then the disk representing A will be separated from the disk representing B as in fig 3.1(b).

L L u

e

(a) AcB (b) A and B are disjoint (c)
Fig 3.1
However, if A and B are two arbitrary sets, it is possible that some objects are in A but not

in B. Some are in B but not in A. Some are in both A and B, and some are neither in A nor

in B; hence in general we represent A and B as in fig 3.1(c).

3.5 OPERATIONS ON SETS

Union and Intersection

The union of two sets A and B, denoted by A U B, is the set of all elements which belong to A or to
B. That is,

AUB={x:x€ Aorx e B}

Here “or” is used in the sense of and/or. Figure 3.2(a) is a Venn diagram in which A U B is
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shaded. The intersection of two sets A and B, denoted by ANB, is the set of elements which

belong to both A and B:
ANB={x:xe A,x€ B}

Figure 3.2(b) is a Venn diagram in which ANB is shaded.

(a) AUB is shaded. (b) ANB is shaded.
Fig 3.2

Examples

3. Let A={1,2,3,4},B={3,4,5,6,7},C=(2,3,5,7}. Then

AUB={1,2,3,4,5,6,7} ANB = {3, 4}
AUC={1,2,3,4,57) ANC = {2, 3}
BUC={273,4,56,7) BNC = {3,5,7)

4. Let M denote the set of male students in a university C, and let F denote the set of female

students in university C. Then

MUE=C
since each student in C belongs to either M of F. On the other hand,
MNF= @

since no student belongs to both M and F.
The operation of set inclusion is closely related to the operations of union and

intersection, as shown by the following theorem.
Theorem 3.2
The following are equivalent: ACB, AN B =A, AUB=B.

Complements

Recall that all sets under consideration at a particular time are subsets of a fixed universal

set U. The absolute complement or, simply, complement of a set A, denoted by A°, is the set of
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a

elements which belong to U but which do not belong to A:

A° ={x:xeU,xeg A}
Some texts denote the complement of A by A’ or A. Figure 3.3(a) is a Venn diagram in which A°
is shaded.

The relative complement of a set B with respect to a set A or, simply, the difference of A

and B , denoted by A\ B, is the set of elements which belong to A but which do not belong to B:
A\B={x:xe€ A, x¢ B}

The set A \ B is read “ A minus B”, Many texts denote A \ B by A-B or A~B. Figure 3.3(b) is a
Venn diagram in which A \ B is shaded.

(a) A° is shaded. (b) A\ B is shaded
Fig 3.3
Example

1. Let U={1, 2, 3,...}, the positive integers, be the universal set. Let A={1, 2, 3, 4}, B={3,
4,5,6, 7}, and let E={2, 4, 6, 8,...}, the even numbers. Then

Af={5,6,17, 8',} B°={1,2,8,9,10,...} and E°= {1, 3, 5, 7,...}, the odd numbers.

3.5.1 PROPERTIES OF SET OPERATIONS

The operations on sets that we have just defined satisfy many algebraic properties, some
of which resemble the algebraic properties satisfied by the real numbers and their operations. All
the principal properties listed here can be proved using the definitions given and the rules of

logic.
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Commutative Properties
1. AUB=BUA
2. ANB=BNA
Associative Properties
3. AUBUC)=(AUB)UC
4. ANBNC=(ANB)NC
Distributive Properties
5. ANBUC)=(ANB)UANCQC)
6. AUBNOC)=(AUB)N(AUCQ)
Idempotent Properties
7. AUA=A
8. ANA=A

Properties of the complement
9. A)=A
10.AU A=U

11LAN A= 0

i

12. 6=U

—
W
=l

iy

={}
14. AUB=ANB
155ANB=A UB Properties 14 and 15 are known as De Morgan’s Laws.

=

Properties of Universal Set \
16 AUU=U
17.ANU=A

Properties of Empty Set
18. AU @=AorAU{}=A

19.AN @=0orAN{}={}

3.6 INCLUSION AND EXCLUSION

Let A and B be two finite sets. If A and B are disjoint sets, i.e., AN B = @,
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then JAUBI|=|A|+[B] oviviiiiiiiiinnnn. ¢)) /

If the sets overlap, the formula (1) is not a valid formul_a. In such situation we use the
following theorem.

Theorem 3.3

If A and B are two sets, then | AUB | =|A| + [B| - | A N B|

Example
1. Verify the theorem 3.1 for the sets A= { a, b, c, d, e, f} B={c, e, f, h, m, n, k}

Solution

By theorem 3.3,

|A UB|=|A| +|B|-|A N B|
AUB={a,b,cd,e,f h m,n,k}
|A UB|=10

Therefore, LHS=10

|Al=6, [B=7, |A N B| =|{c, e, f}]

|A N BJ=3

RHS=6+7-3=10

LHS=RHS. The theorem is verified.

Theorem 3.4
If A,B and C are finite sets, prove that
| AUBUC|=|Al+ B+|C]-A N BB NC|{A N Cl+JA N BN C|

Theorems 3.3 and 3.4 are extensively used in solving problems

Examples

1. A software firm wants to appoint 35 programmers to work on system programming jobs
and 50 programmers for application programming. Out of these 20 candidates are capable
of doing jobs of both types. How many programmers must be appointed?

Solution:

Let A be the set of system programmers.
Let B be the set of application programmers.
Then, |A| = 35, |B|=50, |A N B|=20
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Number of programmers to be appointed is,
|AUB|=|A|+[B|-[ANB
=35 + 50 -20 =65.

2. A Survey on mode of travel is conducted on the employees of an office. Every employee
uses a bus, train or scooter as mode of travel to the office. More than one option was
permitted. The survey results were: Bus- 40 people, Train — 45 people, Scooter — 90
people, Bus and Train — 25 people, Bus and Scooter — 25 people, Train and Scooter — 35
people and 10 people uses all 3 modes. How many were surveyed?

Solution:
Let A be the people travelling by bus.
Let B be the people travelling by train.
Let C be the people travelling by scooter.
|A| = 40, |B|=45, |C|]=90, |A N B|=25, |A N C|]=25, |BN C|=35 and |A N BN C[=10.
By using the principle of inclusion and exclusion, Number of people to be surveyed is
|AUBUC|.
By Theorem 3.4,
| AUBUC|=|Al+ |BJ+|C]-|/A N B|-B NC |-|A N C|+|A N BN C|
= 40+45+90-25-35-25+10 =100.

3.7 INDUCTION

Induction Principle

Let P(n) be a proposition defined on the set of positive integers N.

(1) On the basis step the proposition P(ny) is true and

(i1) On induction step, if the proposition P(k+1) is true under the induction hypotheses

that P(K) is true, then P(n) is true for all n >= no.
Examples
1. By mathematical induction, prove that
n(n+1)

14243+...+n=
2
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Solution:

Let the proposition P(n) be,
1+2434...4n=n(n+1)/2
Basis Step

When n=1, P(1)= 1(d+D)=1.
2

When n=2, P(2) = 2(2+1) =3.
2

P(2): 3=3, P(2) is true.

So, P(ny) is true where ngis finite.

Induction Hypotheses

Pky: 14243+..4k= KKtl) -.cciconiiiicaianannan

2
P(k) is true.

Induction Step
Adding (k+1) on both sides of (1),

P(k+1): 1+2+3+...+k+(k+1) = k(k+1)+(k+1)
2
=(k+1)((k+1)+1)
2
So. P(k+1) is true.

Thus, P(n) is true for n>=ny,
2. By mathematical induction, prove that
n(n+1)(2n+1)
1%42%43%.. 40 —4m8M8—
6
Solution:
Let the proposition P(n) be,
n(n+1)(2n+1)

1242%43% . 4n’=
6
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Basis Step

When n=1, P(1) = 1= 1(1+1) (2x1+1)

6
P(1): 1= 1.

P(1) is true.

When n=2, P(2) = 2> = 2(2+1)(2x2+1)
6

P(2): 1+4=5.
P(2) is true.
So, P(no) is true where nois finite.
Induction Hypotheses
Pk): 1242%43%4.. . +K* = k(k+1)(2k+1)
P(k) is true. °
Induction Step

Adding (k+1) on both sides of (1),

.......................

Pk+1): 1%42%43% . +K+(k+1)* = k(k+ D+(2k+1) + (k+1)?

6

~(k+1)(2K* + Tk + 6)

P(k+1)= (k+1)(k+2)(2k+3)
6

P(k+1): 1242%43%.. . +(k+1)* = (krD((k+ D)+ D(2%+1)+1)

6

So. P(k+1) is true.

Thus, P(n) is true for n>=ny,

6
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3.8 SUMMARY

In this unit a detailed discussion on set theoretic concepts may be found. Several
examples of sets, types of sets such as countable, finite, uncountable, null and so on are defined
and explained with illustrations. Use of principle of inclusion and exclusion in solving problems

are also discussed. The very important, extensively used concept of induction is discussed here.

3.9 KEYWORDS

Sets- null set, empty set, subset, countable set, uncountable set. Set Operations- Union,

intersection, complement, Inclusion and exclusion and Induction.

3.10 QUESTIONS

1. Define a set. Provide examples by listing and using abstraction.

N

Tlustrate the concepts of countable, finite, uncountable, subsets, empty, null sets.

Name the operations on sets and illustrate.

State the complement properties.

State De Morgan’s law and distributive properties.

What is |AUB| and |AUBUC|?

Verify the expressions in problem 6 in examples of your choice.

Using induction find 2+4+6+... and 2°+4%+6%+. ..

CON LR CTVE CV R o B e
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UNIT -4: SET THEORY- PART II

Structure
4.0 Objectives
4.1 Counting principles
4.1.1 Permutaticns
4.1.2 Combinations
4.2 Pigeon hole principle
4.2.1 Extended pigeon hole principle
4.3 Summary
4.4 Keywords
4.5 Questions

4.6 References

4.0 OBJECTIVES

After going through the contents of this unit,

v You will have better understanding of permutation and combination usages

v You will be able to use pigeon hole principle in solving problems.

4.1 COUNTING PRINCIPLES

Permutations and Combinations

Suppose there are four objects a, b, ¢, d. To make a selection of three things, choice must
be one of the following: abc, abd, bed, acd. These selections are called combinations of four things taken
three at a time. The total number of these selections or combinations is 4. |

Suppose to arrange four things taken three at a time, first select three things and then arrange
them. Suppose we select abc. These three objects can be arranged as: abc, acb, Lea, bac, cab, cba. Thus

the number of arrangements that could be made from each selection is 6.
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Hence, corresponding to four selections, theie are 24 arrangements. These arrangements are
called permutation of four things taken three at a time. Total number of these permutations is 24.
Generalization

If there are n things a, b, c, ..., a selection of r out of these without reference to the order is called
a combination of n things taken r at a time. It is denoted by "C;.

An arrangement formed by selecting r things out of n things and placing them in a definite order
is called a permutation of n things taken r at a time. It is denoted by "P;.

4.1.1 PERMUTATIONS

Multiplication principle

Suppose two tasks Tj and T, are to be performed in sequence. If T; can be performed in n;
ways, and for each of these ways, T, can be performed in n, ways, then the tasks T; T; in a
sequence can be performed in nyn; ways.
Example

Let the task T; can be performed in three ways and for each of these ways, T, can be

performed in 4 ways. Then the task T; T, in a sequence can be performed in 3*4=12 ways.
Generalization

Suppose the task T, T,..... Ty are to be performed in sequence. If T, can performed in n;
ways, and for each of these ways T, can be performed in n, ways and for each of these nin,
ways, T3 can be performed in n3 ways and so on. Then the sequence T; T,

performed in exactly nyny_. . ny ways.

Examples

1. Students Id number consists of one letter followed by 3 digits. If repetitions are allowed,

how many distinct Id numbers can be generated?

Solution:

letter digit digit digit
26 10 10 10
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The beginning letter can be done in 26 ways.
Each digit can be performed in 10 ways. Thus the distinct Id numbers can be generated in,
26*10*10*10=26,000 ways.
2. A computer password consists of two letters of English alphabet followed by three digits.
How many different passwords can be generated?

Solution:

letter digit digit digit digit
26 10 10 10 10

First English letter can be done in 26 ways.

Second English letter can be done in 26 ways.

First digit can be performed in 10 ways.

Second digit can be generated in 10 ways.

Third digit can be done in 10 ways.

Thus, the password can be generated in 26%26*10*10*10=676000 ways.

We state some important results here which may be of use in solving problems.
Result 1: Let A be a set of n elements. Then A can have 2" numbers of subsets.

Result 2: Let A be a set of n elements. Allowing repetition, the number of sequences of length r
can be constructed is n" where 1<r <n.
Examples
1. How many three letter words can be formed from letters in the set {a, b, ¢, d, e}, if
repetition of letters allowed?
Solution:
Here n=5, r=3.
Number of three letter words can be performed=53=125.
2. How many 4 digit numbers can be formed with the 10 digits 0,1,23..911,
(i) Repetitions are allowed.

(ii) Repetitions are not allowed.

(iii) The last digit must be zero and repetitions are allowed.
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Solution:

(1)

d, d; ds ds

10 10 10 10
digit - 1 can be filled in 10ways.
digit - 2 can be filled in 10ways.
digit - 3 can be filled in 10ways.
Since, repetitions are allowed,
digit - 4 can also be filled in 10ways.
Thus possible 4 digit numbers = 10*.

(ii)

d1 dz d3 d4

10 9 8 7

digit - 1 can be filled in 10 ways. Since, repetitions are not allowed,
digit - 2 can be filled in 9 ways.
digit - 3 can be filled in 8 ways.
digit - 4 can be filled in 7 ways.
Thus possible 4 digit numbers

= 10x9x8x7

= 5040.

(iii)

dI d2 d3 0

10 10 10 1
digit - 1 can be filled in 10 ways. Since, repetitions are allowed,
digit - 2 can be filled in 10 ways.
digit - 3 can be filled in 10 ways.

Thus possible 4 digit numbers with last digit zero

= 10x10x10 = 10°,
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Result 3: Permutations of n objects taken r at a time can be done in "P; ways.

Let A be a set of n elements. The number of different sequence of length r can be formed from A
where all the elements in sequence must be distinct is "P;.

Example

How many words of four distinct letters can be formed from the letters of the word
MASTFRIEND?

Solution:

Here n=10, r=4.

10!
l0p, —
(10-4)!

10x9x8x7x6!

10p, —
6!

1%p, = 5040 ways.

Result 4:
Let A be a set of n elements. Permutation of n elements taken all at a time can be done in n!
ways.
Examples:

1. In an experiment a student has to arrange a book, a pencil, an eraser, a ruler and a

sharpener in a row. How many different arrangements are possible?

Solution:

The number of objects in the experiment = 5

Permutation of 5 objects taken all at a time

= 5! ways

= 120 ways.

2. A coin is tossed 6 times. How many different sequences of heads and tails are possible?
Solution:

In one toss, it may be head or tails.

Different sequences possible = 2t

Different sequences possible = 64.
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Result 5:

Let A be a set of n elements, in which first element appears K; times, second element appears K2
times and so on. The number of distinguishable permutations that can be formed is:

n!/ (K1! X Kz! T Ki!)

Examples:
1. Find the number of distinguishable words that can be formed from the letters
(a) REFERENCE
(b) STRUCTURES
(c) CQDELETE
Solution:
(a) REFERENCE
The letter R appears 2 times.
The letter E appears 4 times.
The letter F appears 1 time.
The letter N appears 1 time.
The letter C appears 1 time.
The number of distinguishable words that can be formed is

9!
= = 1512 ways.
2Wx4lx11x11x1!

(b) STRUCTURES
The number of distinguishable words that can be formed is

10!
= = 226800 ways.
Wx 2 x 2 x2x11x1!

(c) CQDELETE

The number of distinguishable words that can be formed is

8!
= = 6720 ways.
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Lix il x 3tx 30 x 11 x 1

2. A mini-meal includes a soup, a course, a dessert and an ice cream. Suppose that a
customer can select from 5 soups, 6 courses, 4 desserts and 3 types of ice creams. How

many different mini=meals can be selected?

Solution:

Let T be the task of selecting the soup.

This can be done in °P; = 5 ways.

Let T, be the task of selecting the course.

This can be done in °P; = 6 ways.

Let T3 be the task of selecting the dessert.

This can be done in *P; = 4 ways.

Let T4 be the task of selecting the ice cream.

This can be done in 3P1 = 3ways.

Different meals can be selected in 5 x 6 x 4 x 3 ways

= 360 ways.

3. How many numbers greater than a million can be formed with the digits 4, 5, 5, 0, 4, 5,
3?

Solution:

6 7 7 ¥ 7 7 7
First digit cannot be 0. So, first digit can be selected in 6 ways.
The remaining digits form a string of length 6. This can be done in 7° ways.
Thus the number of numbers greater than a million that can be formed is

=6 x 7° ways.
4. How many ways can 6 men and 6 women be seated in a row if
(a) Any person may sit next to any other.

(b) Men and women must occupy alternate seats?
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Solution:

(a) 6 men and 6 women may sit next to any other can be done in (6+6)! = 12! ways.

M, | W, [My |[W, [Mz |[W; |[My |Ws |Ms |Ws Mg |Ws

Here, men first and women next.
6 men can be arranged in 6! Ways.

6 women can be arranged in 6! Ways.

Wi M, W, M; W3 M3 Wi My Ws Ms We Mg

Here, women first and men next.

6 women can be arranged in 6! Ways.

6 men can be arranged in 6! Ways.

Number of ways of arranging men and women alternately is,
=6!x6!x 6! x 6! Ways
= 1036800.

5. A committee of 4 is to be chosen out of 6 Englishmen, 5 Frenchmen and 4 Indians, the
committee to contain 1 of each nationality.
(a) In how many ways can it be done?

(b) In how many arrangements will a particular Indian be included?

Solution:

(a)
M, M, M;
6 5 4

An Englishman can be selected in 6 ways.
A Frenchman can be selected in 5 ways.

An Indian can be selected in 4 ways.
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A committee can be done in = 6 x 5 x 4 ways.

A committee can be done in = 120 ways.

(b)

M 1 Mz M3
6 5 1

An Englishmen can be selected in 6 ways.

A Frenchmen can be selected in 5 ways.
A particular Indian can be selected in 1 way.
A committee of 3 members with a particular Indian can be done in =6 x 5 x 1 ways

= 30 ways.

4.1.2 COMBINATIONS

Let A be the set of n elements. Number of combinations of the elements of A takenr at a

n!

time can be done in ways. It is denoted by " C,

r! (n-r)!

n!
Thiis, “C 4o

r! (n-r)!

Result 1: Let A be a set of n elements. Suppose K selections are made from n without
considering the order and repetitions are allowed. The number of ways in which these selections
can be made is ™V C,.
Examples:
1. A valid computer password consists of 8 characters, the first letter is chosen from the set
{P,Q,R,S,T,U,V,W} and other seven characters are chosen from either English alphabet

or a digit. How many different passwords are possible?
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Solution:

The first letter from the given set can be chosen in higs ways.

The remaining seven can be chosen from 26 English alphabet and 10 digits where
repetitions are allowed.

A string of 7 characters from 36 characters can be selected in 367 ways.

By the multiplication principle the number of different passwords possible = ® C ; x 36’.

. How many different 9 person committees can be formed each containing 4 women from a

set of 20 women and 5 men from a set of 30 men?

Solution:

The selection of 4 women from 20 women can be done in *° C 4 ways.

The selection of 5 men from 30 men can be done in ** C s ways.

By the multiplication principle the number of 9 person committees that can be formed is
20 30
= C 4 X C 5

=690441570.

Result2: "C,.= "C,.;

Examples

. n=51r=2
5x4
“C,=Cs= —=10.
152

nCn-l'= Cs.p=C3= ——=10.

2. n=61=2

xS
"C.=%ax =15.
1x2
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6x5x4x3
nCn.r=6C6_2=6C4= _—=15.
1x2x3x4

3. In how many ways can a committee of 3 faculty members and 2 students be selected from 7
faculty and 8 students?
Solution:
3 faculty members from a set of 7 faculty members can be selected in ’ C 3 ways.
2 students from a set of 8 students can be selected in ® C 2 ways.
By the multiplication principle the required committee can be selected in
"C3x®C, =980 ways.

4. How many different sets of 8 cards with 5 red cards and 3 black cards can be formed from a
deck of 52 cards?
Solution:
The deck of 52 cards has 26 red cards and 26 black cards.
Selection of 5 red cards from 26 red cards can be done in *° C 5 ways.
Selection of 3 black cards from 26 black cards can be done in *® C 5 ways.
Number of different selection of set of 8 cards can be done in ** C 5 x *° C 5 ways.
5. An Urn contains 15 balls, 8 of which are red and 7 are black. In how many ways can 5 balls
be chosen such that
(a) All 5 are red?
(b) All 5 are black?
(c) 2 are red and 3 are black?
(d) 3 are red and 2 are black?
Solution:
(a) Selection of 5 balls where all are red can be done in 5Cs=56 ways.
(b) Selection of 5 balls where all are black can be done in 7C 5=21 ways.
(c) Selection of 2 red balls can be done in ® C » ways and selection of 3 black balls can be

donein’ C 3 ways. The required selection can be done in 1% e 5= 980 ways.
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(d) Selection of 3 red balls can be done in ® C ; ways and selection of 2 black balls can be

donein’ C 2 ways. The required selection can be done in®C 5 x 7 C 2= 1176 ways.

4.2 PIGEONHOLE PRINCIPLE

Statement:
If n pigeons are assigned to m pigeonholes and m < n, then at least one pigeonhole
contains two or more pigeons.
Proof
Pigeonhole 1 2 3 - e - - m

Pigeons { 1,2, 3....m, (m+1), ... n}
Assign Pigeon 1 to Pigeonhole 1
Pigeon 2 to Pigeonhole 2
Pigeon 3 to Pigeonhole 3

Pigeon m to Pigeonhole m
Since, n > m, the number of pigeons left with are (n - m). The (n - m) Pigeons are yet to be

assigned to Pigeonholes. Thus, at least one Pigeonhole will be assigned to second Pigeon.

Examples
1. If 8 people are chosen in any way from some group, at least two of them will have born
on the same day of the week. Here each person (pigeon) is assigned to the day of the
week (Pigeonhole) on which he or she was born. Since there are eight people and only
seven days of a week, the Pigeonhole principle tells us at least two people must be
assigned to the same day of the week.
Note that the pigeonhole principle provides an existence proof; there must be an object or
objeéts with a certain characteristic. In the example just discussed above, this characteristic is
having been born on the same day of the week. The pigeonhole principle guarantees that there

are at least two people with this characteristic, but gives no information on identifying these
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people. Only their existence is guaranteed. In contrast, a constructive proof guarantees the
existence of an object or objects with a certain characteristic by actually constructing such an
object or objects. For example, we could prove that, given two rational numbers p and q, there is

a rational number between them by showing that (p+q)/2 is between p and q.

To use the pigeonhole principle, we must identify pigeons (objects) and pigeonholes
(categories of the desired characteristic) and be able to count the number of pigeons and the

number of pigeonholes.

2. Show that if any 5 numbers from 1 to 8 are chosen, then two of them will add up to 9.
Solution:

Construct four different sets, each containing two numbers that add up to 9 as follows:
A={1, 8}, A;={2, 7}, As={3, 6}, As={4, 5}. Each of the five numbers chosen should belong
to one of these sets. Since there are only four sets, the pigeonhole principle tells us that two

of the chosen numbers belong to the same set. These numbers add up to 9.

3. Show that in a group of 9 people at least three of them have been born on the same day.
Solution:

Number of people (pigeons) =9

Number of days in a week (Pigeonholes) = 7.

Suppose that first seven people have born on distinct days.

Pigeonholes g M T Y Th F Sat

Pigeons P, P, P; Py Ps Ps P; Py & Py

Assigning one person for each of the days, we are left with Pg & Po.

Assume that the persons Pg & Py are born on Saturday and assign Pg & Py to the pigeonhole
Saturday.

According to the pigeonhole principle one pigeonhole contains 3 pigeons.

Thus, at least three people have been on the same day of the week.

4. There are 13 students in a class room. Show that at least two of them have been born on

the same month.
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Solution:

Pigeonholes [jIFIM|[A|[M|J[J|A|S|[O|N|D

Pigeons P, P;3P; P3 Py Ps Ps P7 Pg PoPio P11 P2

Here 12 months of the year are pigeonholes.

Assign person 1 to the Pigeonhole January.

Assign person 2 to the Pigeonhole February.

Continuing in the same way, assign person 12 to the pigeonhole December.

Person 13 is yet to be assigned to a pigeonhole.

Since, the pigeons have a common property; assign any one of the 12 pigeonholes to Pjs.

Let it be January. Thus, at least one pigeonhole contains two or more pigeons.

4.2.1 EXTENDED PIGEONHOLE PRINCIPLE

Extended Pigeonhole Principle is used when the number of Pigeons is much larger than the number
of Pigeonholes.

If P Pigeons are assigned to Q Pigeonholes, then one of the Pigeonholes must contain at least
L(P-1)/Q. +1 Pigeons, where | P/Q] stands for largest integer <= P/Q
Examples

1. Show that if 30 dictionaries in a library contain a total of 61,327 pages, then one of the

dictionaries must have at least 2045 pages.
Solution:

Let the pages be the pigeons and the dictionaries the pigeonholes. Assign each page to the
dictionary in which it appears. Then, by the extended pigeonhole principle, one dictionary

must contain at least | 61,326/30] + 1 or 2045 pages.

2. Show that if 8 colors are used to paint 49 houses, at least 7 houses will be of the same

color.
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Solution:
Here scooters are pigeons and colors are pigeonholes. So, P=49 and Q=8. According to the
extended pigeonhole principle, one of the colors must be painted to at least,
L@9-1y8] +1= L48/8] +1
=6+1

= 7 houses will have same color.

3. Show that in a group of 30 people at least 5 of them were born on the same day of the
week.
Solution:
Here people are pigeons and days of the week are pigeonholes. So, P=30 and Q=7.According
to the extended pigeonhole principle, one of the colors must be painted to at least,
L@o-1y7] +1= [29/7] +1
=4+1

= 5 people are born on the same day of the week.

4.3 SUMMARY

In this unit we discussed basic methods of counting namely Permutation and
Combination. Several illustrations are discussed for better understanding of the usage of

permutation or combination. Later, Pigeonhole Principle and its extension are also stated and

several examples solved.

44KEYWORDS

Counting, Permutation, Combination, Pigeonhole Principle.
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4.5 QUESTIONS

1. Explain when to use permutation and when to use combination while counting.

2. A bank password consists of two letters of the English alphabet followed by 2 digits. How
many different passwords can be formed?\

3. Compute ® Ps, * Py, ™' P,.;.

4. How many permutations are there of the set { r, s, t, u, o}. For this set find the number of
permutations taken 3 at a time and two at a time.

5. Compute’ C4,"C a2

6. In how many ways can a 6-card hand be dealt from a deck of 52 cards?

7. In how many ways can a committee of 6 people be selected from a group of 10 people if one
person is to be designated as chair of the committee?

8. If 13 people are assembled in a room, show that at least two of them must have their birthday
in the same month.

9. Show that if any eight positive integers are chosen, two of them will have the same remainder
when divided by 7.

10. Prove that if any 14 members from 1 to 25 are chosen, then one of them is a multiple of

another.
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UNIT-5: RELATIONS

Structure
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5.12 Summary
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5.0 OBJECTIVES

When you go through this unit, you will be able to

v" Explain the Relations, Matrix and Digraph;

v" Explain the properties of relations;

v Give an account of equivalence and compatibility relations;
v Analyze the composite relations.

v" Analyze the Warshall’s Algorithm.
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5.1 INTRODUCTION

Relation is a basic concept in day to day life and Mathematics. A relation shows an association

of objects of a set with objects of other sets (or the same set). The essence of relation is these
associations. A collection of these individual associations is a relation. To represent these
individual associations, a set of "related" objects, can be used. The order of the objects must also

be taken into account. Thus sets with an order on its members are needed to describe a relation.

The relation matrix is used to represent a relation on a computer and is useful in studying the
properties of a relation. The equivalence and compatibility relations have useful applications in

the design of sequential machines and digital computers.

5.2 RELATION

Definition: Let A and B are two non-empty sets, the Cartesian product of A and B is defined

by A x B= {(a, b)la € A and be B}.

Example 1: Let A={a,b}, B={1,2,3}. Find (a) Ax B (b) B x A
Solution: (a) A x B={(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)}
(b) B x A={(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}

Definition: Let A and B be two non-empty sets. A Relation (Binary relation) R from Ato B is a
subset of A x B.
If (a,b)eR then, a is related to b by the relation R. It is also denoted by ,Rs.

Example 2: Let A ={1, 2, 3}, B ={a, b}

A x B={(1,a), (1,b), (2,a), (2,b), (3,2), (3,b)}

Ri={(1,b), (2,a), (3,b)}

R,={(2,2), (2,b), (3,b)}

Then, Ry, R; are the subsets of A x B. So, R}, R; are called relational sets of A x B.
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Example 3: Let A={1,2,3,4}. Construct the relational set R such that R={(a, b) | a >b}
Solution: Find A x A. Select the elements where a > b.
R={(1,1), (2,1), (2,2), (3.1), (3,2), (3,3), (4,1), (4,2), (4,3), (4.4)}.

Definition: Let R be a relation from A to B. The domain of R is the set of elements in A that are
related to some element in B. It is denoted by Dom(R).

Example 4: Let R={(1,1), (2,1), (2,2), 3,1), (3,2), (3,3), (4,1), (4,2), (4,3), (4,4)}.

Dom(R)=({1, 2, 3, 4}.

Definition: Range of R is the set of all elements in B that are related to some element In A. It is
denoted by Ran(R).

Example 5: Let R={(1,1), (2,1), (2,2), (3,1), (3,2), (3.3)}

Ran(R)={1, 2, 3}

5.3 RELATION MATRIX AND DIGRAPH

Definition: Let A= {aj, ay, ..., an) and B={by,b,,..., by} be two sets. Let R be the relation from
A to B. The relation R can be represented by an m x n matrix called Relation Matrix, denoted by
MR and defined as ‘
Mg= [m;;] where my=1, if (a;, b)) € R
=0, if (aj, b)) € R

Example 6: Let A = {1, 2, 3, 4} and B= {by, bz}. Let R={(1,b2), (2,b1), (2,b2), (3,b1)}. Write the
relation matrix Mg.

Solution:

A x B={(L,b1), (1,b2), (2,b1), (2,b2), (3;b1), (3,b2), (4,by), (4,b2)}

The Relation matrix of R is of order 4x2.

10

1
1
0
0
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Definition: Let A be a finite set and R be a relation on A. The digraph of R consists of elements

of A as vertices and (a;, a;) in R as a directed edge from a; to a;.

Example 7: Let A= {1, 2, 3, 4, 5} and R={(1,2), (1,4), (1,5), (3,2), (4,1), (4,2), (4.5), (5,5}, a
relation on A. Draw the digraph of R.

Solution:

Digraph
1 . 2 3
v N

5
<
4
Fig 5.1

5.4 PROPERTIES OF RELATION

A relational set satisfies the following properties
Reflexive: - Let A be a set and R be a relation on A. R is said to be reflexive, if (a, a) € R for
all ae A.
Symmetric: Let A be a set and R be a relation on A. R is said to be symmetric, if whenever
(a, b) € R then (b, a) eR.
Anti symmetric: Let A be a set and R be a relation on A. R is said to be anti symmetric if
whenever (a, b) €R, (b, a) €R, then a=b.
Transitive: Let A be a set and R be a relation on A. R is said to be transitive, if whenever (a,

b) € R and (b, c) € R then (a, c) € R.

Example 8: Let R={(1,1), (1,2), (2,1), (2,2), (3,3), (3.4), (4,3), (4.4), (5.5)} be a relation on A=
{1, 2,3,4,5}. Determine the properties of R.

Solution: R={(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4), (5.5)}
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(1,1), (2,2), (3,3), (4,4), (5.5) € R. So R is reflexive.
(1,2), (2,1), (3,4), (4,3) € R. So R is symmetric.
(1,2), 2,1)e R, (1,1)e R
(34),(43)e R, (33)e R
Thus, for any (a,b), (b,c) € R, (a.c) € R. So R is transitive.

5.5 PARTITION AND COVERING

Definition: Let S be a given set and A = {Ay, Ay, ..., Am} where each A=l 2reem. 15 a

subset of S and UA,, = S . Then the set A is called a covering of S, and the sets Ay, A, ... , An
i=1

are said to cover S. If, in addition, the elements of A, are mutually disjoint, then A is called a

partition of S, and the sets Ay, Ag, ....... , Apare called the blocks of the partition.

Example 9: let S = {1, 2, 3} and consider the following collections of subsets of S.
A={{1,2},{2,3}}, B={{1} {L,3}} C={{1}{2,3}}
D={{1,2,3}}, E={{1}, {2}, {3}}, F={{1}, {1, 2}, {1, 3}}
The sets A and F are coverings of S while C, D, and E are partitions of S. Of course,

every partition is also a covering. The set B is neither a partitions nor a covering of S.

5.6 EQUIVALENCE RELATION

Definition: Let A be a set and R be a relation on A. R is said to be an equivalence relation if it is

reflexive, symmetric and transitive.

Example 10: If R is the relation on Z, the set of integers such that R={(x,y)| x-y is divisible by
5}, show that R is an equivalence relation.

Solution: Let R= {(x,y)|(x-y) is divisible by 5}

Reflexive: For a€ Z, (a, a) €R because (a-a)=0 is divisible by 5

So R is reflexive
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Symmetric: For (a,b) €R = (a-b) is divisible by 5
= (b-a) is also divisible by 5
= (b,a) € R.
Hence, R is symmetric.
Transitive: For (a,b) € R = (a-b) is divisible by 5
and for (b,c) € R = (b-c) is divisible by 5
Then, (a-c) = (a-b) + (b-c) is divisible by 5 = (a,c) €R
Hence, R is transitive.

Thus, R is an equivalence relation.

Definition: Let R be an equivalence relation on a set A. For any a€ A, the subset [a]r of A given

by [a]r = {bE A |(a, b) €R} is called an R-equivalence class generated by a € A.

Theorem: Every equivalence relation on a set generates a unique partition of the set. The biocks

of this partition correspond to the R-equivalence classes.

5.7 COMPATIBILITY RELATION

Definition: A relation R is said to be a compatibility relation if it is reflexive and symmetric.

Obviously all equivalence relations are compatibility relations.

Example 11: Let A={1, 2, 3, 4}, R={(1,1), (1,2), (1,4), (2,1), (2,2), (2,3), (3,2), (3,3), (3:4),
(4,1), (4,3), (4,4)}. Show that R is a compatibility relation.

Solution: (1,1), (2,2), (3,3), (4,4)eR. So, R is Reflexive.
(1,2), (2,1), (1,4), (4,1), (2,3), (3,2),(3.4), (4,3)€eR
So, R is Symmetric.

Hence, R is a compatibility relation.

Graph of Compatibility Relation R

Since R is reflexive, each vertex has a self-loop. For simplicity omit the loops.
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Since R is symmetric if there is a directed edge from a to b, definitely there is a directed edge

from b to a. For simplicity, draw an edge from a to b omitting the arrow.

s
A\

Fig 5.2: Digraph of R in Example 11

4 3

Fig 1.3: Simplified Graph

Matrix Representation
The relation matrix of a compatibility relation is symmetric and has its diagonal elements unity.
It is, therefore, sufficient to give only the elements of the lower triangular part of the relation

matrix.

Relation matrix of R

1 2 3 4
1 1 1 0 1
1 1 1 0
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Compatibility Relation Matrix

2 1

3 0 1

- | 0 1
1 2 =

Definition: Let A be a set and R a compatibility relation on A. A subset B of A is called a
maximal compatibility block if every element of B is related to every other element of B and no

element of A-B is related to all the elements of B.

Example 12: Find the maximal compatibility blocks of the relation R in Example 10
Solution: Maximal compatibility blocks of R are
{1,2}, {2,3}, {3,4}, {1, 4}

These sets are not mutually disjoint, and therefore they only define a covering of A.

5.8 COMPOSITION OF BINARY RELATIONS

Definition: Let R be a relation from A to B and S be a relation from B to C. Then a relation
written as R - S is called a composite relation of R and S where

ReS = {(a, ¢)| (a, b) € R and (b, ¢) €S}

The operation of composition is a binary operation on relations, and it produces a relation
from two relations. The same operations can be applied again to produce other relations. For
example, let R be a relation from A to B, S a relation from B to C, and P a relation from C to D.
Then R - S is a relation from A to C. We can form (R - S) - P, which is a relation from A to D.
Similarly, we can also form R+(S'P), which again is a relation from A to D. So, we have

(R-S)-P=R-(S-P)=R-S-P
Example 13: Let R = {(1, 3), (4, 5), (2, 2)} and S = {(1, 2), (2, 1),(3, 3), (5,2)) be relétions on
the set A= {1, 2, ...,5}.FindR-S,S-R,R-(S-R),(R-S)-R,R'R,S-S,andS‘S-S.

Solution:
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R-8= {(1,3), (2, 1), (4,2)}
S'‘R= {1,2),(2.3), (52)} #R - S
R-S-R)= {23)472)}

R-S)'R= {(2,3),4,2)}=R-(S'R)

R‘R= {(2,2)})
S-S= {2,2),3,3), (1, D}
$-8:8S= ({(1,2),(21),3,3)}

Matrix of the Composite Relation:
Let the relations A and B be represented by nxm and mxr matrices respectively. Then the

composition A-B  which we denote by the relation matrix C is expressed as

Cy :V:’:l(ai,‘ Aby), i=12,..,n;j=12,..,r.

Example 14: Let R = {(1,2), (1, 3), (2, 2), (3, 3), (3,4), (4,2), (4,4), (4,5)} and S = {(1, 1), (1,3),
(2, 1), (2, 4), (2, 5), (3, 1), (4, 2), (4,4)) be relations on the set A= {1, 2, ..., 5}. Compute the

relation matrices for R-Sand S * R.

Solution:
0 1 1 0 0 1 01 0 0 ks B RSl
0 1 0 0 0 o ag 11 1 0 0 1 1
0 01 1 0[-]1 00 0 Ol=f1 090 0 0
G (TR 0. 1 @ 1 o g 1 0 1 o
0 00 0 O 0 0 0 0 O 0 0 0 0 0
Mg Ms Mr.s »
15008 TN OSSO pOE TR O RN () 08 1R ()
1 0 01 110 1 0 0 O 0 1 1 1 1
1 0 0 0 0Of.JO0 0 1 1 ol=1]0 1 1 0 0
01 0 1 0[]0 1 011 0 1 0 1 1
0 00 0 oo 0 0 0 o A G OO0
MS MR MS R
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5.9 TRANSITIVE CLOSURE

Definition: Let A be a set with |A| = n and R be a relation on A. Then the transitive closure of R

is defined as R°=R UR?*U ... UR".

Example 15: Let A= {1, 2, 3, 4}, and let R={(1,2), (2,3), (3.4), (2,1)}. Find the transitive closure
of R.

Solution: Given R={(1,2), (2,3), (3,4), (2,1)}

Method 1:

R*=R<R={(1,1),(1,3), 22), 2,4}

R?=R?<R = {(1, 2), (1,4), (2,1), 2,3)}

R*=R*R = {(1,3), (2, 2), 24)}

R“=RUR?*U...UR?

R® ={(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2.3), (2.4), (3.4)}

Method 2: The matrix of R is

010 0

1010

Mr=10 0 0 1

0 0 0O

We may proceed algebraically and compute the powers of Mg. Thus

1 010 01 01
*a3°10 1 90 1 3 |1 0 1 0
Mr)e=1yp o 0 0 Mr)e=1g 0 0 0
0 0 0O 0 0 0 O

10 1 0

4 |01 0 1

Mr)%e=15 0 0 0

0 0 0O

Continuing in this way, we can see that (Mr)" » equals (MR)2 » if n is even and equals (MR)3 S

is odd and greater than 1. Thus
Mz”=Mg V (Mp)’s V (Mr)’s

1111
T 3 4 d
o 0 0 1
6 0 0 O

74



5.10 WARSHALL’S ALGORITHM

Warshall’s Algorithm is a simple and easy procedure to compute the transitive closure of R.
Starting with the matrix Wo=MRg, construct Wys recursively until we get W,=Mg”™, which is the

matrix of transitive closure. From the matrix, the transitive closure is obtained.

Algorithm

Initialize Wo=Mp.

The procedure for computing Wy from Wy.;.

Step 1: First transfer to Wy all 1’s in Wy.,.

Step 2: List the location py, pa, ... , in column k of W, where the entry is 1, and the locations
d1,q2, ... , in row k of Wy.;, where the entry is 1.

Step 3: Put 1’s in all the positions (p;, q;) of Wi(if they are not already there).

Repeat the above steps from k = 0, unti! Wy_;=W,.

Example 16: Consider the relation R defined in Example 15. Then

01 0 0
worsicfy 03 0
0 0 0 O

and n=4.
First we find W, from Wy so that k = 1. Wy has 1’s in location 2 of column 1 and location 2 of

row 1. Thus W; is just Wy with anew 1 in position (2, 2).

01 00
1 110
W‘=0001
0 0 0 0

Now we compute W, from W, so that k=2. W has 1’s in locations 1 and 2 of column 2 and
locations 1, 2, and 3 of row 2.
Thus, to obtain W5, we must put 1’s in positions (1,1), (1,2), (1,3), (2,1), (2,2), and (2,3) of

matrix Wy . Thus we get
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o=
(o= B SO

0 0

0
0
1

0

We compute W3 from W so that k=3.Processing, we see that column 3 of W; has 1’s location 1

and 2, and row 3 of W5 has a 1 in location 4. To obtain W3, we must put 1’s in pbsitions (1,4)

and (2,4) of W3, so

SO

O = =

To find Wy, transfer all 1’s from W3 to W4. W3 has 1’s in locations 1,2,3 of column 4 and no 1’s

in row 4, so no new 1’s are added. Thus,

Wy=

COR M
==
oo R R
e = G S

Hence, MR” = W4=Wi.

So, R® ={(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3.4)}

5.11 SOLVED PROBLEMS

1. Find the domain, range, relational matrix and the digraph of the relation R for the following.

i.  A={a,b,c,d},b={1,23,4)
R={(a,1), (a,2), (b,1), (c,2), (d,1), (d4), (c.4)}
ii. A=B=(1,2,3,4,8, 10}, R={(a b)|a=b).

Solution:
i Dom(R) = {a, b, ¢, d}
Ran(R) = {1, 2, 4)
Relational matrix: |A|=4, |B|=4, the order of Mg is 4x4
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1 1 0 O
1 0 0 O
01 0 1
1 0 0 1
a |
b 2
c 03
d 4

Fig 5.3: Digraph

i, A={1234,8,10}=B

R= {(a, b) |a=b}
R={(1,1),(2,2,),(3,3),(4,4,),(8,8),(10,10)}
Dom(R)=(1, 2, 3, 4, 8, 10}

Ran(R) = {1, 2, 3, 4, 8, 10}

Relational matrix

|A|=6, |B|=6, MR is of order 6X6.

'1 0 0 0 0 0]
010000
001 000
M=
000100
000 010
0 000 0 1}

77



1 : 3
o O G
. 8 10
o G G
Fig 1.4: Digraph

2. Let A= {1, 2, 3, 4, 5}. Determine whether R is reflexive, symmetric, anti symmetric and
transitive.
(a) R={(1,2), (1,3), (1,4), (2,3), (2:4), (3:4), (5.5)}
(b) R={(1,3), (1,1), (3,1), (1,2), (3,3), (4.4)}
() R={(1,1), (2,2), (3,3), (5,9)}

Solution:
(@) R={(1,2), (1,3), (1,4), (2,3), (2.4). (3.4), (5.5)}
Fora#5 € A, (a, a) €R.
So, R is not reflexive.
For (a,b) €R, (b, a) €R.
So, R is not symmetric.
For (1,2) & (2,3)e R =(1,3)e R
(1,3)& (34)eR =(14)€R
23)&B34)eR =>24)€R
12)&(24)eR =(14)€R
So, for all (a,b) & (b,c) € R, (a,c) € R

R is transitive

(b). R={(1,3),(1,1),(3,1),(1,2),(3,3),(4.4)}

(2,2), (5,5) €R
So, R is not reflexive

(1,2) e Rbut (2,1) €R
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So, R is not symmetric
(3,1)& (1,2) € Rbut, (3,2) ¢ R

So, R is not transitive

(¢) R={(1,1),(2,2),(3,3),(5,5)}
R is anti symmetric

R is not reflexive and transitive

Let Z denote the set of integers. Define a relation R on Z by R= {(a, b) | GCD (a, b)=1}.

3:
Discuss the properties of R.
Solution:
Reflexive: For 1€ Z, GCD (1, 1)=1 implies (1,1)eR.
If a#l € Z, GCD (a, a) =a #1 implies (a, a) ¢ R.
Hence, R is not reflexive.
Symmetric: For, a, b € Z, and GCD(a, b)=1, then (a, b) eR
GCD(a, b)=1 implies GCD (b, a)=1, then (b, a) eR
Hence, T is symmetric.
Transitive: For a, b € Z, and GCD(a, b)=1, then (a, b) eR
Forb, ¢c € Z, and GCD(b, ¢)=1, then (b, c) € R
GCD (a, b)=1, GCD(b, c)=1 implies GCD(a, c) = 1 then (a, c) €R.
Hence, T is transitive.
4. Let A={1,2,...,7} and R = {(a, b) | a-b is divisible by 3}

Show that R is an equivalence relation. Draw the graph of R. Find the partition generated by R.

SOLUTION:

For any a € A, a-a is divisible by 3; hence aRa, or R is reflexive.

For any a, be A, a-b is divisible by 3, then b-a is also divisible by 3; that is, aRb => bRa. Thus R

is symmetric.
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For a, b, ¢ € A, if aRb and bRc, then both a-b and b-c are divisible by 3, so that a-c = (a-b) + (b-
c) is also divisible by 3, and hence aRc. Thus R is transitive.

Fig 5.4: Digraph of R

Partition generated by R
[1lr={be A |(1,b) €R}
={1,4,7}
[2]r = {(be A |2, b) €R}
={2,5}
[3lr= {beA|(3,b) €R}
={3, 6}
[4]r={be A |(4, b) €R}
={1,4,7}
[5]r = {be A |(5,b) ER}
= {2 5}
[6]r = {be A |6, b) €R}
={3, 6}
[7lr={be A |(7, b) R} -
={1,4,7}
Partition: {{1,4, 7}, {2, 5}, {3, 6}} = {[1]&, [2]r, [3Ir} or {[4]r, [S]r, [6]R}

80



5. Let A={l, 2, 3, 4) and R={(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4.4)}. Is

R an equivalence relation? If yes, find the partition of A induced by R.
Solution: Reflexive: For ac A, (a, a) €R, so R is reflexive
Symmetric: For (a,b) €R, (b,a) € R.

Hence, R is symmetric.

Transitive: For (a,b) € R, (b,c) € R = (a,c) eR
Hence, R is transitive.
Hence R is an equivalence relation.
[1lg={be A |(1,b) €R}

={1.2 3}
[2]r = {be A |(2,b) €R}

={1,2, 3}

[3lr = {be A |(3, b) eR}

={1, 2, 3}
[4]r={be A |4, b) eR}

= {4}
Partition of A induced by R= {{1, 2, 3}, {4}}

6. Let the compatibility relation on a set {1, 2, ..., 6} be given by the matrix

2 1

3 1 1

4 1 1 1

5 0 1 o 0

6 | 0 0 1 0 1
1

2 3 -+ 5
Draw the graph and find all the maximal compatibility blocks of the relation.

81



Solution: The graph of the compatibility relation is

2y 1 6

Fig 5.5: Simplified graph
The maximal compatibility blocks are
{1,2,3,4}, {2, 5}, {3, 6}, {5, 6}

7. Let the compatibility relation on a set {1, 2, ..., 6} be given by the matrix

2 1

3 1 1

4 0 0

) 0 0 0 0

6 1 0 1 1 0
1 2 3 e 5

Draw the graph and find all the maximal compatibility blocks of the relation.
Solution: The graph of the compatibility relation is

Fig 5.6: Simplified graph
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The maximal compatibility blocks are
{1! 2v 3}' {1! 31 6}! {3’ 4’ 6}‘ {5}

8. LetR and S be two relations on a set of Natural Numbers N:
R={(x,2x)|x e N} S={(x,5x)|x € N}

FindR-S,R*R,R-R-R,andR"-S-R.

SOLUTION:
B -S= {(x,10x) | xe N} =S-R
R:R= {(x, 4x) | x € N}
R-R'R= {(x,8x)|x€ N}
R-S-R= {(x,20x)|x € N}

9. LetR={(1,1), (1, 2), (2,1), (4,3)} be arelation on A={1, 2, 3, 4}. Find the transitive closure
of R by Warshall’s algorithm.

Solution:
S )
_ 1 0 0 O
Wo=Mr=15 o o o
0 0 1 0

First we find W, from Wy so that k = 1. W has 1’s in locations 1 and 2 of column 1 and row 1. .
Thus Wy is Wy with a new 1 in the positions (1,1), (1,2), (2,1), (2, 2).
1100
Wi-lo 0 o o
0 01 0 _
Now we compute W, from Wy so that k=2. W, has 1’s in locations 1 and 2 of column 2 and row
2

Thus, W; has no new 1's. So, we get

S
S B
R oo o
co oo

Hence, Mg” = Wy =W,.
So, R” ={(1,1), (1,2), (2,1), (2,2), (4,3)}
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5.12 SUMMARY

Definition: Let A and B be two non-empty sets. A Relation (Binary relation) R from A to B is a
subset of A x B.
Definition: Let A= {ay, aa, ..., am) and B={by,b,,..., by} be two sets. Let R be the relation from A
to B. The relation R can be represented by an m x n matrix called Relation Matrix, denoted by
Mg.
Definition: Let A be a finite set and R be a relation on A. The digraph of R consists of elements
of A as vertices and (aj, a;) in R as a directed edge from g; to a;.
Definition: Let A be a set and R be a relation on A. R is said to be an equivalence relation if it is
reflexive, symmetric and transitive.
Definition: A relation R is said to be a compatibility relation if it is reflexive and symmetric.
Definition: Let R be a relation from A to B and S be a relation from B to C. Then a relation
written as R - S is called a composite relation of R and S where

ReS = {(a, c)| (a, b) € R and (b, c) €S}

Warshall’s Algorithm is a simple and easy procedure to compute the transitive closure of R.

5.13 KEYWORDS

Relation, relation matrix, digraph, transitive closure

5.14 QUESTIONS

1. Find the domain, range, relational matrix and the digraph of the relation R for the

following.

i. A={x,y z},B=(1,2,3,4},R={(x,1), (,2), (,]), (x,2), (z.1), (z:4), (4}

ii. A=B={1,2, 3, 4,9, 10}, R={(a, b) | a=b}.

2. Let A= {1, 2, 3, 4, 5}. Determine whether R is reflexive, symmetric, anti symmetric and
transitive.

i R={(1,1), (1,3), (1,4), (2,1), (2,4), (3.4),(4,5), (5,5)}

il. R={(1;1), (2.2), (3,3), (3, 5), (3.5)}
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3. If R is the relation on Z, the set of integers such that R={(x,y)| x congruent to y (mod 2)}.
Determine whether R is an equivalence relation. If so, find the partition generated by R.

4. Let the compatibility relation on a set {1, 2, ..., 6} be given by the matrix

2 0

3 1 1

B 1 0 1

5 0 1 0 1
1 2 3 4

Draw the graph and find all the maximal compatibility blocks of the relation.
ii. Let R = {(1, 2), (4, 5), (2,2),(3,1)} and S = {(1, 1), (2, 1), (3, 3), (5, 3)} be relations
on the set A= {1,2,...,5}.FindR-S,S-R,R-(S-R), (R-S) R, matrices of R-S
and S - R.
5. LetR = {(1,1), (1, 4), (2,1), (2,2), (2,4), (3,3), (4,4)} be a relation on A={1, 2, 3, 4}. Find

the transitive closure of R by Warshall’s algorithm.
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UNIT-6: RECURRENCE RELATION I

Structure
6.0 Objectives
6.1 Introduction
6.2 Recurrence relation
6.3 Backtracking method
6.4 Characteristic equation method
6.5 Solved Problems
6.6 Summary
6.7 Keywords
6.8 Questions

6.9 References

6.0 OBJECTIVES

When you go through this unit, you will be able to
v" Explain the meaning of a recurrence relation;
v’ Evaluate the recurrence relation by the method of backtracking.

v" Evaluate the recurrence relation by the method of characteristic equation.

6.1 INTRODUCTION

A recurrence relation is an equation that recursively defines a sequence: each term of the
sequence is defined as a function of the preceding terms. The term difference equation
sometimes refers to a specific type of recurrence relation. Note however that "difference
equation” is frequently used to refer to any recurrence relation. Some simply defined recurrence
relations can have very complex (chaotic) behaviors, and they are a part of the field of
mathematics known as nonlinear analysis. Solving a recurrence relation means obtaining a

closed-form solution: a non-recursive function of .
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ii.

1ii.

iv.

6.2 RECURRENCE RELATION

Definition: An equation that expresses a, i.e. general term of the sequence{a,} in terms of one

or more of the previous terms of the sequence, namely ay, ay,..., a,. for all integers n withn = ny

where ny is a non-negative integer is called a recurrence relation for {a, }or a difference relation.

Every recurrence relation must have an initial value.

Examples 1:
(1) Xn = 5xu-l+ 8xn-2; X1 = 4.

(“) Xn = 2xn-l i 5, X1= -2,

Definition: A recurrence relation of the form Coa, + Ciani + Caana + ... + Cxang = fin) is
called a linear recurrence relation of degree K with constant coefficients where Cy, Ci,..., Ck are

real numbers and Cg #0.

Note:

1) The recurrence relation is called linear because each a, is raised to the power 1.

2) The degree of the recurrence relation is the difference between the greatest and least

subscripts of the members of the sequence occurring in the recurrence relation.

3) If fin) = 0 the recurrence relation is said to be homogeneous; otherwise it is said to be non-

homogeneous.

Examples 2:

A relation, C, = -2 C,1 is a linear homogeneous recurrence relation of degree 1.

A relation x, = 4 x,.1 + 5 is a linear non-homogeneous recurrence relation because second

term in RHS is a constant. It does not contain x,.» factor.
A relation x, = x,.1 + 2 x,2 is a linear homogeneous relation of degree 2.

. 2 . . . v s
A relation x, = x%,.1 + x,.2 is a non-linear, non-homogeneous relation, because the first term in

RHS is a second degree term.
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Method of Solving Recurrence Relations

The important methods to solve a recurrence relation are:
(i) Backtracking method
(ii) Characteristic equation method.

(iii) Generating function method.

6.3 BACKTRACKING METHOD

This is a suitable method for linear non-homogeneous recurrence relation of the type x, = rx,.; +

s. The method is explained below using an example.

Example 3: Using backtrack method solve the recurrence relation
Xn =i * 5 0 =5,
Solution:
X=X D X 20 (1)
Put n=n-11in (1)
Xp1=Xp2+S (2)
Using (2) in (1)
Xn = (X2 + 545
Xn=Xp2+2X5 . (3)
Put n=n-2in (1)
Xpg A g HE v e e me e 4)
Using (4) in (3)
Xn=(xp3+5)+2 X5
Xn= Xp3+3X5
Repeating for (n-1) times, we get
Xo=x1 3 (n-1), X1=2.
Xn=15+ 5(n-1).

x.=5n.
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6.4 CHARACTERISTIC EQUATION METHOD

By the Characteristic Equation method, there are two parts to the total solution of the recurrence
relation. The Complementary Function (homogeneous pali) of the solution depends only on the
LHS of the recurrence relation. The Particular Integral (particular solution) depends on the RHS
and has the same form as the RHS. The two parts are computed to form the total sofution.

Given the recurrence relation alUps + bU,4; + cU, = fin) with Up = a, U, = B we proceed as
follows. )
Step 1: Rule to find the complementary function.
Frame the auxiliary (characteristic) equation
am’ +bm+c=0

Depending on the nature of the roots of above, CF is got as follows:

Nature of Roots : CF
Real distinct A, u A"+
Real repeated A, A (ci+c')A"

Complex roots r e r(cjcos n@ + cysin nb)

Step 2: Findi,ng Particular Integral (PI) by the method of indeterminant coefficients.

The PI is formed for each term or group of terms on RHS. A suitable trial PI function U, is

chosen from the table below, substituted in the recurrence relation and the unknowns are found.
The choice of trial PI function depends on the type of term in f{n). Refer table 6.1.

Step 3 Using the initial conditions C;, C; are evaluated to get the total solution.
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Table of trial function

Type of term Trial function

a' , Ad"
An d"if d"is in CF
An’d’if d"and n d" are in CF

a"(an’+ pn +¢c) d"(An® + Bn +C)

Take higher order polynomial if needed

ar’+ pn+'c An’ + Bn+C
Take higher order if needed

a cos nA +p sin nA A cos nA + B sin nA

a"(a cos nA +f sinnA) a"(Acos nA +B sin nA)

Table 6.1

Example 4: Solve a, = 4a, —4a,2 + (n + .1)2“ by the characteristic equation method.
Solution: By rearranging the given equation we get,
a, - dan + da,2 = (n+1)2°
The auxiliary equation is
m’-4m +4'=0
ez
CF'=(c; 4 cn)2"
We assume the particular solution as
a, = n(cy + con)2"
a1 = (1-1)° (c1 + c2(n-1))2""
an2 = (0-2)" (c1 + ca(n-2))2"
n2(c; + cm)2” - 4(n-1)%(cy + ca(n-1)2"" +4(n-2)% (c1 + c2(n-2))2"% = (n + 1)2"
n2(cy + cam)2” — 4(n>2n+1)( c1 + cancg) 2V + 4(n”-4n+4)( c1 + con-2¢2) "2 =n2" + 2"
Equating the coefficient of n’ on both sides
n%(c; + con) — 2(n*-2n+1)( ¢ + can-cz) + (n2-4n+4)( ¢; + can-2cy) =n + 1

el — 2c1 + 2¢cs +4cy + €1 - 2c; -4y = 0
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Equating the coefficient of n, 4c| —4c; - 2¢; -4c; + 8cy +4c3 =1
6cy; =1
c;=1/6

Equating constant terms

-2c1+ 2c3 +4¢1 -8cx =1

2c1—-6c,=1
201-—1=1
Cl=l

an = (¢ + cn)2" + n’[1 + (n/6)]2"
= [1 +(1/6)n]2" + n’[1 + (n/6)]2"

6.5 SOLVED PROBLEMS

1. Solve C, = C,.; + n, C; =5, by the method of backtracking.
Solution:
Given, C,=Cp1+n,Ci=5 (1)
Put n=n-1in (1)
Cxrmadm-1) e 2)
Using (2) in (1)
Co=Cha+®-1)+n . 3)
Put n=n-1in (1)
Cha=Cra+(n-2) e 4)
| Using (4) in (3),
Co=Chz+[(n-2) + (n-1) + n]

.................................
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---------------------------------

Co=C1+[1+2+3+....... + (n-2) + (n-1) +n]

n(n-1)

Cn=C|+
2

-1
Cn = 5 + -“(nT) .

2. Using backtrack method solve e, = eq.1 — 2, €1 = 2.

Solution:
e =L #8ym2 . Gaesivers (1)
Put n=n-1in (1)
Cai=fa=2 e (2)
Using (2) in (1)
. ep=epa—2-2
en=¢€Ca—=22) VLS (3)-
Put n=n-2 in (1)
Cro=€ya—2 . 4)
Using (4) in (3),
en = en3 —2-2(2)
epn=ey3-2(3)
e, = e —2(n-1)
en=2-2(n-1)
2-2n+2
en=4-2n.

3. Solve an.; - 3ans1 + 2an = 2" n > 0 given ap = 3, a; = 6 by the characteristic equation
method.
Solution: The characteristic equation is
m’—3m+2=0

m= 152
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CF=¢1" + ¢32" =¢; + ¢;2"
Assume the trial solution as
a, = An2"
ane1 = A(n+1)2™" = 2(An+A)2" = 2An2" + 2A2"
an2 = A(n+2)2™2 = 2%(An+2A)2" =4An2" + 8A2"

4An2" + 8A2" - 3(2An2" + 2A2") +2An2" = 2" .

4An + 8A - 6An-6A + 2An=1
Equating coefficient of n, 4A-6A +2A=0 -
Equating constants c, 2A=1, A=Y
a = C; +622° + (1/2)n2" = ¢; + ¢;2" + n2""
put n=0, ap=c;+c; = cr+cp=3

n=1, a;=c;+2c;+1 = c1+2¢3=S5

c2=2andc =1

ap=1+22"+n2"!

ap =1+ 2" 4 n2™!

4. Solveap, —2a,=5;n>0ay=1, by the Characteristic equation method.

Solution: The auxiliary equation is
m-2=0
m=2
CF=¢2"

Assume the trial particular solution as
h =Ajan =A
A-2A=5
-A=35; A=-5
an=c2"-5
put n=0, ag=c;—95

c1=6

aa=0(2")~5

bul
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5. Solve a,-2ap = 2n%:n>1 given ag = 4, by the method of characteristic equation.
Solution: The auxiliary equation is
m-2=0;m=2; CF=¢2"
Assume the trial particular solution as
a,=An’+Bn+C
ap.r'= A(n-1)* + B(n-1)+ C
An? + Bn + C - 2 An® + 4An -2A"-2Bn'+ 2B = 2C =2n°
Equating coefficient of nz, AL2ZA=2

A=-2
Equating cqefﬁcient of n, B4+4A-2B=0
' 4A-B=0
-8-B=0
B=-8
Equating constants,” ' C-2A+2B-2C=0
-2A +2B-C=0
C=-2(-2) +2(-8)
C=-12

4 =2r>< 8n~ 12
a, = ¢1 2" —2n%- 8n — 120
put n=l, ay=2c-2-8-12 7
4=2c-22
=2c1=26; c1=13
a, = 13(2") - 2(n” + 4n + 6)

6. Solve anz - Taqs1 -8 a, = n(n-1) 2" = (n*- n)2"
Solution: The auxiliary equation is
m’-7m-8=0
(m-8)(m+1)=0
m=3§, -1
CF=¢8" + co(-1)"

Assume the trial particular solution as
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a, = (An® + Bn + C)2"
ane1 =[A (n* +2n +1)+ B(n + 1)+ C 2™
ane2 =[A (n* +4n +4)+ B(n + 2)+ C]2™*
(An” + 4An +4A +Bn + 2B + C)2™ — 7(An + 2An + A
+Bn+B+C)2™! - 8-(An2 +Bn+C)2"= ‘(n:2 n)2"
4An* + 16An + 16A +4Bn + 8B + 4C - 14An’ — 28An - 14A
-14Bn — 14B -4 8An - 8Bn - 8C) C) n’-n
Equatmg coefficients of n’,
4A-14A-8A=1
A =-(1/18)
Equating coefficient of n, -
16A + 4B —28A - 14B - 8B = -1
-12A-18B =-1
18B=1-12A
=1-12[-(1/18)]
=1+ (2/3)=5/3
B = 5/54
Equating constant, o
16A + 8B + 4C — 14A— 14B — 14C —'8C'= 0
2A -6B -18C=0
18C=2A - 6B
9C = A - 3B
= (-1/18) - 3(5/54)
=-(1/18) = (5/54)
=-(6/18) = -1/3
C=-1/54

1
a, =[(— n? —n——Z”
1 (18 +54

an = ¢18" +ca(-1)" - (1/54)(3n* - 5n + 12",
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6.6 SUMMARY

A recurrence relation is an equation that recursively defines a sequence: each term of the
sequence is defined as a function of the preceding terms.

A recurrence relation of the form Coa, + Ci@n.1 + C2an2 + ... + Cxapx = fin) is called a linear
recurrence relation of degree K with constant coefficients where Co, Ci,..., C are real numbers
and CK #0

The important methods to solve a recurrence relation are:
(i) Backtracking method

(i) Characteristic equation method.

(iii) Generating function method.

Backtracking is a suitable method for linear non-homogeneous recurrence relation of the type
Xg = Iy + 8.
The characteristic equation method involves the computation of complementary function and

particular integral to solve linear recurrence relation.

6.7 KEYWORDS

Recurrence relation, sequence, auxiliary equation.

6.8 QUESTIONS

1. Solve the following recurrence relations by the method of backtracking.

i) by =3bg1+1,b1=7

ii) ap=apy+2n,a;=3.

2. Solve the following recurrence relations by the characteristic equation method.
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i) az=3ap1-22a52,a=5anda; =4.
ii) ap=4a,;—4a,2+2" a=3,2a, =6.
ii1) 8nea - 785s1 ~12 80 =0(n-1) 2"

iv) apns1 —8a,=5;n>0ap=-2.
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7.0 OBJECTIVES

When you go through this unit, you will be able to

v" Explain the meaning of the generating functions;

v" Evaluate homogeneous recurrence relation by the method of generating functions.
v" Evaluate non-homogeneous recurrence relation by the method of generating

functions.

7.1 INTRODUCTION

A generating function is a formal power series in one indeterminate, whose coefficients encode
information about a sequence of numbers that is indexed by the natural numbers. Generating
functions were first introduced by Abraham de Moivre in 1730, in order to solve the general

~ linear recurrence problem.

Generating functions are often expressed in closed form (rather than as a series), by some
expression involving operations defined for formal power series. Indeed, the closed form

expression can often be interpreted as a function that can be evaluated at (sufficiently small)
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concrete values of x, and which has the formal power series as its Taylor series; this explains the
designation "generating functions". Generating functions are not functions in the formal sense of
a mapping from a domain to a codomain; the name is merely traditional, and they are sometimes

more correctly called generating series.

The particular generating function, if any that is most useful in a given context will depend upon

the nature of the sequence and the details of the problem being addressed.

7.2 GENERATING FUNCTION

Definition: The generating function of a sequence ay, aj, az, ... is the expression
GxX)=ap+arx+ ay ..

= 2::0‘171 xn.

7.3 SOLVED PROBLEMS

1. Solve the recurrence relation a, = 3a,.; +1, n=1; given that ag = 1, by the method of generating
function.
Solution:

Let the generating function of {a,} be G(x) = Y5_q @, x™

Multiply the given RR by x" and sum n=1to o0

- Z:=1 an xn —] 3 2:21 an_l xn + Zco=1 xn

) —dp =33y s 2 b 2 o0
G(x) —ap=3x G(x) + x(.l-x)'1
X 1-x4+x 1
Lr LR e
. 13
i et B s
G(x) = (1-x)(1-3x)  1-x + Aeiy

-1 o 3 .
== (1-x) : +-2-(1-3x)]
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0 =1 ¢ 3
Enzo an = 5 4&m=0 x4+ 2 Z:=O 3" x™
=~ a, = Coefficient of x" in G(x)
_‘_1 2 n__]_-_ n+l
=—=t=3 == 1).
2. Use the method of generating function to solve the recurrence relation a, = 4a,.; — 4a,. +4"
n>2, given that ap=2,a; = 8.
Solution: Let Gix) = Y g B X7
Multiply the Recurrence Relation by x" and sum n=2 to co
n=20n X" =40 s 0n 1 X" -4 F0 ;8 5 X" + Tno 47 X
G()—ap—ax=4x ¥ 5 0n_1 X" 1 -4 T2 ap_s x™" 2 + [(4x)* + (4x)° + ...]
= 4x (G(x) - ag) — 4x°G(x) + (4x)*(1-4x)"
G(x)-2-8x = 4x (G(x) - 2) - 4x*G(x) + (4x)*(1-4x)"

@x*-4x-1) G(x) = 2 + 8x-8x+ —o
. 1-4x

162 _ 2-8x+16x?
1-4x  1-4x

=2+

2-8x+16x?

GX)= o

Consider

2-8x+16x* A e IR
(1-2x)(1-2x)2  1-2x (1-2x)%2  1-4x

2 — 8x + 16x2 = A (1-2x) (1-4x) + B(1-4x) + C(1-2x)?

Putx=> -B=2-4+4

B=-2

Put x %—_- 2.2+1=1

1l

B

(Gl
Put x=0 A+B+C=2
A=0
2-8x+16x?
(1-4x)(1-2x)?
4 2

1-4x (1-2x)2

= 4(1-4x)" — 2(1-2%)*

G(x) =
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= 4(1+4x+(4x) 2+ ... +(4x)" + ... 0) — 2(142(2)+3(20) %+ ... +H(n+1)(2x)"+

a, =44"-22"(n+1)
— 4u+]_2u+l(n+l)

3. Use the method of generating function to solve a, - @,.1 — 2a,2 = 0 with ap = 5, a=-3.
Solution: Let G(x) = Yy—g p X" '
Consider, ay-an1—2a,2=0
apxX" - ap X" —2a,.2x" = 0. *  [By multiplying by x"]

Y ax’ —Zan_lx" = 22 a,,x" =0 [By taking summation]
n=2

n=2 n=2

[G(x) - ap — a1x] — x[G(x) - ao] - 2sz(x) =
(1-x-2x") G(x) -5+ 3x+ 5x =0
(1-x-2x") G(x) = 5 - 8x

5-8x
G(x) =
(x) 1-x-2x2
_ 8x-5
T (2x-1)(x+1)
. 8x—5 A B
Consider, = + —

(2x-1)(x+1)  2x-1  x+1
8x-5=A(x+ 1)+ B2x-1)
A+2B=8
A-B=-5

B=13/3
A=B-5=(13/3)-5
A=-2/3

8x—5
(2x-1)(x+1)
By
(2x-1)  (x+1)
2 1 13 1

3 1-2x 3 1+x

G(x) =
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2 . 13 X
= ;(1-2x)1+ = {1+

= §[1 + 20+ 20 4 oo+ (20" + ... 0]

+ 333[1—x+x2-.....+(-1)"x"+..... 0]
>la,x" =322"x" +EZ(—I)"x" =0
n=0 3n=0 3 n=0
_2 4n 13, .0
an=5.2"+ (1)

4. Solve uy+1 -3 up =7.2° with ug = 1

Solution: Let G = ¥7_o u, z" be the generating function of the sequence u,.
Given, sy -3 4, =7.2" s (D
Multiply (1) by z**' and sum from n=0 to o0
Y=o ln4i 2" - 3XR g up 2™ =TX0_ 272"

= Tz ks 22"

G-u=32G=Tz(1-2)" = =
7z
(1-3)G=1+"—

_1-2z47z _ 145z
19z 93z
145z _ A B

= (1-2z)(1-32z)  1-2z + it

1+5z _ A " B
(1-2z)(1-32z) ~ 1-2z 1-3z

1 +5z=A(1-3z)+ B(1-2z)

Equating coefficient of z, -3A - 2B =5 -3A-2B=5 B=1-A
Equating constant c, A+B=1 2A+2B=2 B=1+7
A=T7 B=8
A=-7
-7 8
e

u, =-7(2)" + 8(3)"

check uy=-7+8=1

102



5. Solve 2 -Sttns1 + 61y =n+2 with ug = 0, u=1.

Solution: Let G = ¥7_, u,, z" be the generating function of the sequence u,,.
Given u,.2 -Supey + 6w, =n+2 . (D)
Multiply (1) by z*** and sum from n=0 to o
Zn=oUnsz Z2"°2 - SER g Unss 22+ 6 Doy 2™2 = T2 o(n + 2) 22

G—(uo+uz) - 520G -up) + 622G = F2on 2" + 22 Y2, 2"

G-2-5:G+6°G =2 [2+2+37+ .1 +22[ 1 + 2+ 22 + ...... 1
(1-5z+62)G —z=2(1 —2)2 + 27%(1 - 2)"!
z3 2z2

= o=t
(1-2)2 1-z
3

5o gy 2
(1-52+62)G =z +—+ )2

» z(l—z)i+ 2z%(1-z)+z3
a (1-3)2

_ z(1+2%2-22)+ 22%-22%+23
- (1-2)2

_ z+23-2224222-273473 . R
(1-2)? T (1-2)2

[622-5z+1=0
5+v25-24

2z-1)(3z-1)=0]

z
G= (1-2)2(1-5z+622)

Z

= 0-22@2z-DGEz-1)
z A B C D

(1-2)2(2z-1)(3z-1) = 1-z T(1—z)2 + 2z-1 + 3z-1
2=A(1-2) 2z-1) 3z- 1) + Bz(2z - 1)(3z - 1) + C(1 = 2)*(3z - 1) + D1 — 2)%(2z-1)
Put z=1, 1=2B=>B=1

Put z=0, =A-—C-D
A-D=4
A+(94)=4 =>A=7/4
Put z=1/2 (172) = C. (1/8)
C=d

103



Put z= 1/3 (1/3) = (-4/27)D
D = (-27/4) (1/3) = -9/4
B 7/4 12/2 4 9/4
s =22 T 22-1 32-1

1 1 z 4 9 1
(1-z) 2 (1-2)? 1-2z 41-3z

_7
T4

=% (1) + 2~ 4Q2)" +2 (3)"

Check:
” 9 7-16-9
up==-4+-= =0
07 % 4 4
7 1 27  742-32+27 4
Uy==+=-8+4=— se——mm=-=1
A 4 4 4

6. Solve y,42 -6yn+1 +5y, =0 with yp = 2, y,=6.

Solution: Let G(2) = Y=o ¥n 2™ be the generating function of the sequence y,
Given, Yes e #3%=0 e (1)
Multiply (1) by z*** and sum from =0 to oo

Y0 Ynez 272 - 62 R uo Vst Z™2 4 5 =0 Va2 =0
G(2) - Do + y12] - 62[G(z) - Yol + 52°G(2)=0
G(z) - [2 + 62] - 62[G(z) - 2] + 52 G(z) = 0
(1-6z+52)G(z)-2-62+12z=0
(1-6z+57") G(z)=2-62
[522-6z+1=0

61+v36-20
10

>

T P15

(z-1)5z-1)=0]
(1-6z+52)G=2-62

G(Z) — 2-6z A B

=

5z2—-6z+1 z-1 5z-1
2-6z=A(5z-1) + B(z-1)
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5A+B=-6

-A-B=2
4A = -4; A=-land B =-1
-3 1 &
2t e ey
ot 1
_1-z 1-5z
Yu=1+5"

7.4 SUMMARY

The generating function of a sequence (a,) is the expression

G(X) = Z:=0 an xn.

Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the
general linear recurrence problem., Generating functions are not functions in the formal sense of
a mapping from a domain to a co-domain; the name is merely traditional, and they are sometimes

more correctly called generating series.

7.5 KEYWORDS

Generating function, sequence, recurrence relation.

7.6 QUESTIONS

1. Solve the recurrence relation a, = 5an.1 +2, n>1; given that ap = 3, by the method of
generating function.

By the generating function method, solve u, -2u,.; — u,» = 0 with up =3, u; =-5.
Solve u,41 -3 uy =7.2" with uy = -2.

Solve the recurrence relation ay = 2ay.1 — 2a,, +3"; n>2, given that aqy=2, g, =8.

il B BY

Solve y,+2 “OYVn+1 +5y, =0 with Yo =2, y1=6.
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8.0 OBJECTIVES
When you go through this unit, you will be able to

v" Explain the meaning of a function;
v Analyse the composition of functions.

v’ Evaluate the various types of functions.

8.1 INTRODUCTION

A relation is mainly a correspondence between the members of two sets, associating
members of the first set with those of the second. It is possible that a given relation associates

with any member of the first set several different members of the second set. It is possible that
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some elements of the first set are not associated with any from the second. A special type of
relation is that which associates with each member of the first set ‘only one member of the
second. Such a relation or correspondence is called a function from one set into the other. Thus a

function is only a special type of relation or correspondence.

8.2 BASIC TERMINOLOGY

Definition: Let X and Y are any two sets. A relation f from X to ¥ is called a function if for every

x€ X there is a unique y € Y such that (x, y) € f.

Note:
1) A function f from X to Y is an assignment of exactly one element of Y to every element of X.
2) If y=f(x), then y is called the image of x and x is called the pre-image of y under f.
3) The set X is called the domain of f denoted by Dom (f) and Y is called the co domain of f.
4) The set of the images of all elements of X is called the range of f denoted by Ran (f).
Ran (f) = {fix): x € X}.
5) Ran(f) is a subset of Y.

Example 1: Let X= (x, y, z, w} and ¥ = {1, 2,3, 4}. If Dom (f) = {x, y, z, w} and f(x) =2, f () =
4, f (z) =1, f (w) = 2, then the pictorial representation of f is

\

B WN R

*’

Fig 8.1: A function from A to B

Ran(f) = { 1,2, 4 } which is a subset of the co domain Y.
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8.3 TYPES OF FUNCTIONS

&

Definition: A function f: X —7Y is called one-to-one or injective if distinct elements of X are

mapped into distinct elements of Y.

In other words, f is one-to-one if and only if
f (1) # f (x2) whenever x; # x; or equivalently
fx1) = f( x2) whenever x;=x,.

Example 2: The following function is one-to-one, since distinct elements of X are mapped into

=

distinct elements of V.

Fig 8.2: One-to-one function
The function in Example 1 is not one-to-one, since
fF=fw)=2butx#w.

Definition: A function f: X —Y is called onto or surjeétive if the range Ran(f) - Y. Otherwise it is

called into.

In other words, a function f is onto, iff for every element y € Y, there is an element x € X such

that f (x) = y.



Example 3 :

Fig 8.3: An onto function

The above two examples are not onto.

Definition: A function f: X — Y is called bijective or bijection or one-to-one correspondence if

it is both one-to-one and onto.

Obviously if X and Y are finite such that f: X — Y is bijective, then X and Y have the same

number of elements.

Example 4:

Fig 8.4: A bijective function

8.4 COMPOSITION OF FUNCTIONS

Definition: If f: A — B and g : B— C then the composition of f and g is a new function from A

to C denoted by g °f given by:
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(g°H ) =g{f(x)}forallx€A
Properties:

1. Composition of functions is associative.
ie,If f:A— B, g: B— C and h: C —D are functions then - g-fl=(h-g)-f.

2. If f: A— B and g : B— C are functions, then gof : A— C is an injection; surjection or

bijection accordingly as f and g are injections, surjections or bijections.

Identity Function:
The function f: A— A where f(x) = x, x € A is called the identity function on A. In other words,
the identity function is the function that assigns each element of A to itself and is denoted by Ix

‘or simply /. The function I, is a bijection.

8.5 INVERSE OF A FUNCTION

Definition: If £ A->B and g B-> A, then the function g is called the inverse of the function fifg
of=1I4andfo g=I;. :
In other words, if x€A and y€B then, the function g: B>A is called the inverse of f: ADB if x =
g(y) whenever)y = f(x).

The inverse of f is denoted by ', Thus if £ is the inverse of fthen x = f](y) where y = f(x).
Properties: '
1. The inverse of a function f, if exists is unique:

2. The necessary and sufficient conditions for the function f : A-?B to be invertible is that f is

one- to-one and onto.

3.Iff: A>Band g: B > C are invertible function, then g o f : A = C is also invertible and (g
of)'=flog!
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8.6 CHARACTERISTIC FUNCTION

Definition: If A is a subset of a universal set U, the characteristic function fa of A is defined as
the function from U t o the set {0,1} such that

f()—l if xe A
A0 ifxeA

Example 5: If U={1,2,3,4,5}and A ={2,4} then
fo(1) = 0 = fa(3) = fa(5) and
fa(2)=fa@)=1 since 2,4 EA and 1,3,5¢ A
J

Properties of characteristic functions
1. If Ais asubsetof Uthen f5(x)=1-f,(x) for all xe U
Proof :
fi()=1 & xeA
& XEA
& fax)=0
@ 1-fax)=1
f;(x) =1-f,(x), forxg A.
Sz (x) = 0 & x¢ A
& xe A
& fa(x) =1
& 1-fA(x)=0

f;(x)zl—fﬁ(x)-

2. If A and B are any two subsets of U then f,5(x) = f1(x) f5(x), forall x€ U.

Proof: f,;(x)=1 & x€ ANB.

& xeAandxe B
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@ fa(x)=1and fg(x) =1
@ fax) fp(x) =1
S fang (X) = f4(x) f3(x), when xe ANB.
fasX)=0 & xg ANB.
& x €A and x €B.
& fa(x) =0 and fa(x) =0
& fa(x) fa(x) =0
5o fang () = f4(X) f5(x), when x& ANB.
Hence, f, 5 (x) = f,(x) f5(x), for all xeU.

3. If A and B are any two subsets of U then

Faus(X) = f1(X)+ f5(x) = f1~5(X), where x€U.
Proof: f, z(x)=1 & x€ AUB.
@ xeAorxe B
@ fax)=lorfp(x)=1

<=$ fA(x)+fa(x)_fA(I)fB(x)=l
& [0+ f(X)= [ (D) =1

S faus (X)) = fo () + f5(xX) = fynp(x), where xe AUB.

fazg(¥)=0 & x& AUB.
& x& A orxé B

@ fa(x) =0or f(x) = 0.

& fL()+ fr(x)= f,(x) fr(x)=0
S [+ f(X) = fanp(x)=0

'.‘fAuB(x)=fA(x)+f3(x)_fAnB(x): where x& AU B.
“faus(X) = fL()+ f3(x) = fy5(x), where xeU.

4. Using characteristic functions, prove that
AU(BN(C)= (A_uB)n(AuC)
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Proof: fa up)(X) . faue)(x) = [fa(x)+fa(x)- fans] [Fa(x)+fo(x)- fanc(x)]
= fa(x) fa(x)+ fa(x) fe(x) - fa(x) fanc(x)+ fa(x) fa(x)+ fa(x) fo(x) — fa(x) fanc(x)-
fanB(x) fa(X)- fanp (x) fe(x) + fans (x) fanc(x)
= fa(x) + fanc(x)- fanc(x)+fans(X)+ fanc(x)- fanenc(x)- fane(x)- fanenc(x)+ fanenc(x)
= fa(x)+ fanc(x)- fanenc(x)
= faum noy(x) by property (3)

Hence the result.

8.7 PERMUTATION FUNCTION

Definition: A bijective function from A to A is called a permutation function from A to A.

Definition: The set of all bijective functions from A to A is called the set of permutation
functions from A to A.

8.8 HASHING FUNCTIONS

Definition: If n is the number of available memory locations and k is non-negative integer
representing the key, the hashing function h(k) representing the address of the memory cell in
which k is stored is defined as:

h(k) = k(mod n).
i.e., h(k) is simply the remainder when k is divided by n and it takes values from the set {0, 1, 2,
..., n-1} known as address set.

A hashing function quite often maps different keys to the same address. In general a collision
for a hash function occurs if h(k;)=h(k,) but k; # k». It is necessary to provide storage space for
and also a method of finding the colliding records. There are many techniques called collision
resolution techniques for this purpose. The method called open addressing inserts the colliding

record at the first empty location found.

8.9 RECURSIVE FUNCTIONS
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element of Y.

Definition: A total function f: X—Y is a rule which assigns to every element of X a unique
element of Y.
Example 6: The function f(r) = +Vr is a partial function since f(r) is defined only for the positive

real numbers and not for negative numbers.

Note:

A partial function can be made a total function if we restrict the domain of the function only to

those values for which function value is defined.

Definition: The initial functions over N are (i) zero function, (ii) successor function, (iii)
projection function which are defined by '

(1) Zero function Z defined by Z(x) =0

(ii) Successor function S defined by S(x) = x+1

(iii) Projection function U"; defined by U™ (xi,X2, ..., Xn) = X;

Note:
As U|' (x) = x for every x in N, Uy’ is simply the identify function on N.

Definition: If f, f,, ..., fy are partial functions of n variables and g is a partial function of k
variables, then the composition of g with fj, f3, ..., fxis a partial function h of n variables defined
by
h(x1, X2, ..y Xn) = 8( £1(X1, X2y «ovy Xn)s F2(X15 X2 r0y Xn)y woes fiX1, X2, ooy X)),
Example 7:
Let fi(x, y) = x+y, fa(x, y) = 2x, f3(x, y) = xy and g(x, y, z) = x+y+z.
Then,
g(fi(x, y), fa(x, y), fa(x, y)) = g(x+y, 2X, Xy) = X+y+2x+Xy.
Thus the composition of g with fi, f3, f3 is given by a function h defined by
h(x, y) =x+y+2x+xy.
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Definition: The following operation which defines a function f(x;, X3, ..., Xn, ¥) of n+lvariables
by using two other functions g(x;, X2, ..., X,) and h(x;, Xz, ..., Xn, ¥, Z) of n and n+2 variables,
respectively, is called recursion.

f(xy, X2, ..., Xn,0) = g(X1, X2, ..., Xn)

f(x], x2! seey xn sy+1) = h(X], xz: seey xns Y$ f(xiv x27 LLL] ] xn, Y))

Definition: A function f is called primitive recursive if and only if it can be obtained from the

initial functions by a finite number of operations of composition and recursion.

Definition: Let g(x;, x, ..., x,, y) be a total function over N. g is said be a regular function if
there exists some yo€ N such that g(x;, x3, ..., Xu, Yo) = 0 for all n-tuples (x;, x>, ..., x5) in N".

Example 8: G(x, y) = min(x, y) is a regular function since g(x, 0) =0 for all x € N.

Definition: A function f(x;, x3, ..., x,) is said to be defined from a total function g(x;, x3, ..., Xn, ¥)
by minimization if

F %y Xg000s X )_{l-’»y(g(x,,xz,...,xn,y)=0) if there is such a y
19X X, )=

undefined otherwise

where p, means the least y greater than or equal to zero.

Definition: A function is said to be recursive if and only if it can be obtained from the initial
functions by a finite number of applications of the operations of composition, recursion and

minimization over regular functions.

8.10 SOLVED PROBLEMS

1. Determine whether or not each of the following relations is a function with domain {1, 2, 3,

4}. If any relation is not a function, explain why?

a) Ri={(1,1),(21),(31),(41),(3,3)}
b) Ry={(1,2),(23),(4.2)}
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¢) Ry={(1,1),(2,1),(3, 1), (4D}
d) Re={(1,4),(2,3),(3,2), 4 D}
Solution:

a) R, is not a function since there are 2 pairs (3, 1) and (3, 3) which means that the
image of the element 3 is not unique.

b) R, is not a function since there is no image for the element for the element 3 of the
domain. _

¢) R;is a function even though the images of 1, 2, 3, 4 of the domain are one and the
same element 1.

d) Ry is a function.

2. If f: R— R and g: R— R are functions defined by f(x)= x*+3x+1and g (x) =2x-3, find
f <8 ff. 88
Solution:
(f -g) (x) = flg(0)] = f (2x-3)
= (2x-3)"+ 3(2x-3) + 1
=4x*-6x+1
(8 -) () = glf ] = g [¥ + 3x +1]
=2(x* +3x+1)-3
= 2x% +6x -1.

(fo &) = FIF)] = FI 2+ 3x + 1]
= (% +3x+ 1)+ 3(% + 3x +1) +1
=x*+6x° + 14x" + 15x +5.

(g 8)(x) = glg(x)] = g[2x-3]
=2(2x-3)-3
=4x -9

3. Check whether the function f(x) = x* — 11 from R to R is 1- 1? Onto or both? Justify.
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Solution. Given that f(x) =x*-11, x€R

For 1-1:
Suppose, f (x)= f(y), then
=11 =y2 -11
P=y
xX=%y
.. fisnot 1-1

For onto: For all y € R., we have to show that there exists x such that f(x) =y.

#-11=y
= y+11
X=\y+11 which is not in R for various values of y

.. f is not onto.

4. IfS={1,2,3,4,5) andiff g, h: S>S are given by
f=1{(1,2),2,1),G,4),4)53), 65, 3)}
g=1{(1,3),(2,5),(3,1),4,2),(5,4)}
h={(1,2),(2,2),(3,4), 4 3), 5 1)

a). Verify whether fog=gof
b). Verify whether f, g and h have inverses..
¢). Find f' and i
d). Show that (fog) '=g'of' #f'og".
Solution:
a) (fog)l)=flg(1)]=1(3) =4
(fog)2)=1flg2]=1(5)=3
(fog)3)=1gB3)]=1(1)=2
(fog)4)=flgD]=1f(2)=1
(fog)5)=1gd)]=1(4)=5
fog=1{(1,4),(2,3),(3,2),41),6,5)}
I gof={(1,5),(23),3,2) 44,6 D)
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fog=#gof.

b) Both f and g are 1-1 and onto
« They are invertible
h(1)=h(2)=2
Butl #2
~hisnot 1-1.
Also range (h) = {1, 2, 3,4} #S.
= h is also not onto.

Hence, the inverse of h does not exist.

¢) f! is obtained by reversing the elements in all the ordered pairs of f.
fl={(2, 1), (1, 2), 4, 3), (5, 4), 3, 9)).
It is easy to verify that
fof ' = flof = {(1, 1), (2,2), (3,3), 4,4), (5,5} =L
Similarly, g" = {(3, 1), (5,2), (1,3), (2, 4), (4, 5)}.

d) From f o g,
(fog)" = {(4, 1), (3, 2), (2,3), (1,4, 5, 9)}.
From " and g
glof'={2,3).(1,4),4,1),(55),3,2)}
But, flog'={(3,2), (5, 1), (1,5), 2,3), (4,4)}.
Therefore, (fo g) ' = glof'#flog’.

5 Show that ¢ function f: R — R defined by f(x) =x—i;' is one-to-one and onto and hence
find the inverse.
Solution: Given that f: R— R is defined as f(x) = ﬁ

f is one-one:
Let f(x) = f(y) then x/(x+4) = y/(y+4)
x(y+4) = y(x+4)
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ie. 4x=4y
ie. x=y,

Therefore, f is one-to-one

fis onto: if for every y O R there is a pre- image x [ R, such that f(x) =y .
. X
i.e, y=f(x)= v
y(x+4) = x
Xy +4y =x
x(y-1) =4y

4y

X =
1-y

4x . ; .
Therefore, f l(x) = is the inverse function.

6. Find all permutation of A = {1, 2, 3}.

Solution: The permutation of A are
Pely o o) o PR .S M
Pefy g 3l bl 31 m=l 1]

i i Let A={1,2,3,4},f: A - A be defined by f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 3. Write
this in permutation notation.

Solution:

8. Find the inverse of permutation [; g ﬂ

Solution:

1 2 3

Inverse permutation is [3 1 2

123[12

3
N prl=[2 1 3lP=[3 g 2},ﬁndp20p1.
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Solution:

1 2 3

Pi: i 1 1
2

R (S A |
P2 1 3 2

2 3

il
Hence, p.op2=[1 3 o

10. A company has 10,000 customers. Each customer id is an eight digit number. The hashing

function takes the first four digits as one number and the last four digits as another number, add

them and then applies (mod 64) function to assign an address to the customer record. Determine

the address assigned to the following numbers.

(a) 27266036 (b) 35674690

Solution:

(a) 27266036
2726 + 6036 = 8762
h(8762) = 8762 (mod 64)
h(8762)=58.

The number 27266036 is stored in the address 58.

(b) 35674690
3567 + 4690 = 8257
h(8257) = 8257 (mod 64)
h(8257)=1.

The number 35674690 is stored in the address 1.

-

11. Compute the addresses of 6 memory cells in which the integers 23, 38, 46, 55, 67 and 71 are

to be stored, assuming there are 6 records in the file.

Solution:

Let n = 7, then the address of the memory cells are given by the hashing function h(k) =

k(mod 7).
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The address set is {0, 1, 2, 3, 4, 5, 6}.
When k= 23, 38, 46, 55 the value of h(k)= 2, 3, 4, 6 respectively. The integers 23, 38, 46 and 55

are stored in the memory cells with addresses 2, 3, 4, 6.

hk) | 0 1 2 |3 (4 |5 |6
K 71 |- 23 (38 |46 |67 |55

The next integer to be stored is 67. When k = 67, h(k)= 4.

i.e., 67 must be stored in the cell with address 4. But this cell with address 4 has been already
occupied by 46. So, a collision has occurred.

By collision resolution policy, the first empty cell that follows the already occupied cell is used
to store the current value of k.

The first unoccupied cell that follows the memory cell numbered as 4 is that with address 5. The
integer 67 is thus stored in this cell. The last integer 71 is then stored in the cell with address 0.

The cell with address 1 will remain as an unoccupied cell.

12. For the hashing function h(x) = x (mod 17) show how the following data would be interested
in the order in given initially empty cells. Use the collision resolution policy of inserting the
number in the next higher unoccupied cell. Cells are indexed from 0 to 16.

Given data: 714, 681, 26, 373, 775, 906, 509, 2032, 42, 4,136, 1028

Solution:
h(k) R e e 5 678910 |11 |12 |13 |14 |15 |16
k Gl 3 B 9 |-1|- |4 7 2 1 - - - 3
[ 1 8 8 e 0 6|7 0 0 7
4 |9(1]6 6 5 |3 |2 3
2 118
0 =714(mod 17) 10 =775 (mod 17) 8 =42 (mod 17)
2 =631(mod 17) 5=906 (mod 17) 4 =4(mod 17)
9 =26(mod 17) 16 = 509(mod 17) 0= 136(mod 17)
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16 = 373(mod 17) 9 =2032(mod 17) 8 = 1028(mod 17)

13. For the hashing function h(x) = x*(mod 11) show how the following data would be inserted
in the order given initially empty cells. Use the collision resolution policy of inserting the
number in the next higher occupied cell. All cells are indexed from 0 to 10.
Data: 53, 13, 281, 743, 377, 20, 10, 796.
Solution:
4 = 53%(mod 11) 3=281%(mod 11) 9 =377%(mod 11)
1 = 10%(mod 11) 4=13%mod 11) 3 =743%(mod 11)
4 =20*(mod 11) 5 =796%(mod 11)

hxy[o [t [2 [3 [4 |5 |6 [7 [8][9 |10
X2 |- [10% |- [2817 |537| 137|743 [ 796" |- | 377" | 20°

14. Show that f(x, y) = x+y, X, y €N is primitive recursive.
Solution:
Note that x+(y+1) = (x+y)+1 (1)

L.H.S. of (1) can be expressed in terms of f. R.H.S. of (1) can be expressed in terms of the
successor function S.
That is f(x, y+1)=f(x, y)+1 =S(f(x, y)).
Also, f(x,0)=x.
Define f(x, y) as

f(x, 0) = x = Uy'(x)

f(x, y+1) = S(Us’(x, y, f(x, y)).
Now U, !, Us’, S are initial functions.
Thus, f is got by applying recursion for the functions U,', Us® and S. Hence f is primitive

recursive.

15. Show that f(x, y) = x*y is a primitive recursive function.
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Solution: f(x,0)=x*0=0 (1)

f(x, y+1) = x*(y+1) = (x*y)+x = f(x, y) + x (2)

Comparing (1) & (2) with definition we can write
f(x, 0) = z(x) 3
f(x, y+1) = fi(Us°(x, y, f(x, y)), UP(x, v, f(x, ¥)) (4)

where fi(x, y) = x+y which is primitive recursive.

Taking g = Z and h defined by h(x, y, z) = f;(Us’(x, y, z), U,’(x, y, 2)), we see that (3), (4) define
fi by recursion. As Z is an initial function of g = Z is primitive recursive.

As h is defined using composition of f;, which is primitive recursive, U, U's which are initial
functions, h is primitive recursive. Hence f;, obtained from g and h, using recursion is primitive

recursive.

16. Show that f(x, y) = x” is primitive recursive .
Solution:
Let f(x, 0)=x"= 1
fx, y+1) =x"*141 = x*x¥ = x*f(x,y)
Define f(x, 0) =1
f(x, y+1) = x* f(x, y)
= Uy, fix, y) * U3 (x, v, f(x, )

Now f(x, 0) = S(Z(x)) (S 0 Z is primitive recursive)

f(x, y+1) = h(x, y, f(x. ))
where h(x, y, z) = U (x, y, z) * Us’(x, y, 2).
U ;3, U33 are initial functions and fy(x, y) = x*y is primitive recursive, we see that f is defined by

applying recursion to primitive recursive functions S(z(x)) and h. hence f is primitive recursive.

8.11 SUMMARY

Definition: Let X and Y are any two sets. A relation f from X to Y is called a function if for every

x € X there is a unique y € Y such that (x, y) € f.

Definition: A function f: X —Y is called one-to-one or injective if distinct elements of X are
mapped into distinct elements of Y.
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Definition: A function f: X —Y is called onto or surjective if the range Ran(f) - Y.

Definition: If f: A — B and g: B— C then the composition of f and g is a new function from A

to C denoted by g °f given by:

(g° ) (x)=g{f (x)} forallx € A
Definition: If f: A= B and g: B->A, then the function g is called the inverse of the function f, if g
of= [,\ andfo g=lB.

Definition: If A is a subset of a universal setU, the characteristic function fs of A is defined as

the function from U t o the set {0,1} such that

1 ifxeA

fA(X)--{O if xe A

Definition: The set of all bijective functions from A to A is called the set of permutation

functions from A to A.

Definition: If n is the number of available memory locations and k is non-negative integer
representing the key, the hashing function h(k) representing the address of the memory cell in
which k is stored is defined as:

h(k) = k(mod n).
Definition: A function f is called primitive recursive iff it can be obtaine® from the initial

functions by a finite number of operations of composition and recursion.

Definition: A function is said to be recursive iff it can be obtained from the initial functions by a
finite number of applications of the operations of composition, recursion and minimization over

regular functions.

8.12 KEYWORDS

Function, one-one, onto, inverse, composite function, hashing function, recursion, permutation.

8.13 QUESTIONS
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1. Let A= {a, b, c}, B={x,y, z}. Determine whether or not each relation below is a
function from A to B. Find the range if the relation is a function.
() f={(@a,y) (¢, 2)}
(ii) g = {(a, y).(b, 2),(c, x),(c, 2)}

2. State which of the following are injections, surjections or bijections from R into R, where
R is the set of all real numbers.
i) f(x)=-2x ii) g(x)=x*-1.

3. Let X={1, 2, 3, 4} and a mapping - X be given by f={(1, 2), (2, 3), (3, 4), (4, 1)}

~ Form the composite functions o )

4. If A = {1,2,3} and f,g,h are functions from A to A given by f = [(1,2), (2,3), (3,1},
g={(1,2),(2,1), (3,3)} and h= {(1,1), (2,2), (3,1)}, find (i)fog, (ii) fohog, (iii) gof.

5. Show that the function f(x) =x> and g(x) = x'? for x €R are inverse of each other.

6. Show that the function f: R — {3} — R —{1} given by f(x)= % is a bijection and find its

inverse.
7. If A and B are any two subsets of U then prove that fa g(x)= fa(x)[1-fp(x)]

8. Using characteristic function, prove that

Farp(X) = f1(x) f3(x), forall xeU.

9. LetA={1,234,56}andp;= [l 23456 p=23435
341265}, 231546,

pi=[1 23456
6 3 254 1|,find (i)p2", (ii) p1o(pzopz’),

10. For each hashing function, show how the corresponding data given would be inserted in
the order given in initially empty cells. Use the usual collision resolution policy to
resolve collision.

(i) H(x)=(x2+x)(mod17); cells indexed O to 16; data: 714, 631, 26, 373, 775, 906, 509, 2032,
42, 4, 136, 1028.

(i) H(x) = x+5(mod 11); cells indexed 0 to 10; data: 53, 13, 281, 743, 377, 20, 10, 796.

11. Show that the following functions over N are primitive recursive

(i) Constant function over N.
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(ii) Zero test function.

(iii) Odd and even parity function.
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MODULE 3: Graph Theory

UNITS: 9 to 12
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UNIT -9: GRAPH THEORY - BASICS

Structure
9.0 Objectives
9.1 Definition and representation
9.2 Applications of graphs
9.3 Types of graph
9.4 Matrix representation
9.5 Summary
9.6 Keywords
9.7 Questions for self study

9.8 References

9.0 OBJECTIVES

After studying this unit, you will be able to

v" Define graph and its components, vertices and edges

v" Understand and appreciate some important applications of graphs
v" Learn about various types of graphs: simple, complete, regular, null
v

Represent a graph by a matrix

9.1 DEFINITION AND REPRESENTATION

Here we discuss the definition of a graph and representation of a graph.
Definition

A graph G = (V, E) consists of a set of vertices V = {vy, v3, ...} and edges E = {e,, e,
... }. Each edge ey is denoted by a pair of vertices (vj, vj). These vertices v;, vjare end vertices of
edge ex.
Representation

Most common representation is a diagram such as the one given in figure 9.1.
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Vi

V2 ¥3

Fig 9.1: A graph

There are 4 vertices (shown as dots) vy, vz, v3, V4 and 7 edges (shown in the figure as
lines/curves/loops). Observe there are 2 edges connecting Vi and v3 and these edges are called
parallel edges. Also there is an edge that begins and ends at v,. This is called self loop. You may
observe that edge connecting v, and vy intersects two other edges but not every intersection of
edges should be a vertex. Such intersecting edges should be thought of as being in different
planes and thus have no common points. Note that vertices are also referred to as nodes, points,
junctions and edges can also be called as arcs, branches, lines.

It should be noted that in drawing a graph, it is immaterial whether the lines are drawn
straight or curved, long or short. What is important is incidence between the edges and vertices.
For example the graphs in figures 9.2 and 9.2a are the same, because the incidence between

edges and vertices are the same. Also the graphs in figures 9.3 and 9,3a are the same.

Vi V2
3 vy 2
1g9.3

Fig 9.2 Fig 9.2a Fig 9.3a
Same graphs differently drawn

In the figures 9.2 and 9.3 we have graphs with 4 vertices vy, V2, V3, V4 and 6 edges (vi, v2),

(i, va), (Vi, v3), (V2, va), (V2, Va), (V3, Va).

9.2 APPLICATIONS OF GRAPHS

Application fields are diverse. Here we mention some key fields such as physical, social,

engineering, computer science where graphs are used commonly.
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9.2.1 Origin of graph theory
Konigsberg bridge problem:

Figure 9.4 below shows two islands C and D formed by the river Pregel (in Konigsberg-
present name Kaliningrad, Russia) and the seven bridges connecting the two banks A and B. An
interesting question here is whether or not a person can start from a land area (A, B, Cor D) and
walk over all the bridges exactly once and return to the starting place. Such a tour is called Euler

line.

Pregel river

Fig 9.4: Bridges (shown as rectangles) on the river Pregel

Euler (a renowned mathematician of 18" century) published his first ever paper in the then new
subject ‘Graph Theory’ and proved that above tour is not possible. Euler converted this problem
to a simple graph where each land area is a vertex and bridges are edges connecting the vertices.

The graph of Kénigsberg bridge problem is given in fi gure 9.5.

Fig 9.5: Graph of Kénigsberg bridge problem
Konigsberg bridge problem is the same as drawing the graph in figure 9.5without lifting the pen
and without retracing any edge. A
9.2.2 Utilities problem (application for physical)
There are 3 houses H1, H2, H3 and 3 utilities Water (W), Electricity (E) and Gas (G) are
to be provided to each of the house by means of conduits. Is it possible to make such connections
without any crossovers of the conduits?

This problem can be represented by the graph below (figure 9.6).
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Fig 9.6: Graph of utilities problem
In the graph above, houses, utilities are vertices and conduits are edges. Note that in the graph
above, some crossovers are unavoidable. The crossovers are shown in dotted lines.
9.2.3 Network problem (application in the field of engineering/computer science)
The interconnection of computing systems (LAN, WAN) can be represented using a graph.
Nodes (vertices) are systems and edges are connections between systems. Some special types of

corr.cctions are shown below in figure 9.7.

.__._.——.-—-"—.'__—.

Star connection Bus connection
Fig 9.7: Interconnections of computing systems

When a connection fails, it is equivalent of removal of an edge. Strength of a network,
connectivity between two systems etc can be studied using concepts of graph theory.
9.2.4 Club meet problem (Social application of graph theory)
Six members of club meet daily for lunch together at a round table. They decide to sit with new
neighbor during each day. How many days can this arrangement last?
Equivalent graph: Vertex can be used to represent members and edges represent neighbor
relationship. Figure 9.8 shows two such seating arrangements.

1 6

th &
w

4 1

Fig 9.8: Two seating arrangements with different neighbors
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The number of such arrangements can be found using by graph theoretic considerations.

9.3 TYPES OF GRAPHS

Simple graph is one which does not have any self loop or parallel edges. Referring to
figure 9.1 if the self loop connecting v, to v, and one of the edges connecting v; and v are
removed it becomes simple graph. The graph after deletion of the two edges is shown in figure
9.9.

Vi

Vg4

Va2 V3 J \

Fig 9.9: A simple graph Fig 9.10: An infinite graph

So far we discussed graphs having finite number of vertices and edges (called finite
graph). A graph can also have infinite number of vertices and edges which is then called infinite
graph. Figure 9.10 above shows portion of one such infinite graph. Assume every intersection of
lines to be vertices.

A simple graph with edges connecting every pair of vertices is called complete graph.
Figure 9.11is an illustration of a complete graph of 4 vertices.

If an edge ey connects v; to v; we say that ey is incident on v; and v;. The degree of a
vertex is the number of edges incident on it. Note the in case of complete graph of n vertices the

degree of every vertex is n-1. Figure 9.12 shows a graph and the degree of each vertex indicated.

Vi Vi eV
V3 @vz V4 Ve V3e
4 V2 Ve vo®
Fig 9.12: Complete graph Fig 9.13: Degrees of vertices Fig 9.14: Null graph of
4 vertices. Degree of 1 to 7 in order are of 3 vertices
every vertex is 3 3, 4 (self loops are incident twice),
33,210
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A vertex having no edge is called isolated vertex. In figure 9.13 v, is an isolated vertex.
Isolated vertex has degree 0. A vertex of degree one is called pendant vertex. In figure 9.13 vs is

a pendant vertex.

Number of vertices is order of a graph and the number of edges is its size. For example

the order and size of graphs in figures 9.12, 9.13 are 4, 6 and 7, 8 respectively.

A graph with no edges is a null graph. This graph has only vertices and no edges. All

vertices are isolated vertices. Figure 9.14 above is a null graph of three vertices.

Adjacent edges are those which are incident on a common vertex. For example in figures

9.12 and 9.13 (vy, v2), (v1, v3) and (va, v3), (v3, v¢) are adjacent edges.

Vertices are said to be adjacent if they are end vertices of an edge. For example in figures

9.12 and 9.13 vertices v2, v4 and vy, vs are adjacent.

A graph with some parallel edges is called multi-graph. Graphs in figures 9.1, 9.5 and
9.13 are multi-graphs.

A graph is said to be regular graph if all vertices are of same degree. Figures 9.15 and

9.16 below illustrate regular and not a regular graph.

Vi Vi
Fig 9.15: 3 vertex regular graph Fig 9.16: Not regular

A graph with weights attached to edges is said to be weighted graph. Graph below
(figure 9.17) is a weighted graph.

Fig 9.17: Weighted graph
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Graphs discussed so far contain no direction for edges. Such graphs are called are
undirected graphs. In these graphs edges (1,2) and (2,1) are one and the same edge. Digraph (or
directed graph) is a graph where edges have directions. In a digraph edge (1,2) is an edge with
initial vertex 1 and terminal vertex 2. Edges (1,2) and (2,1) are different in digraphs. If both
(1,2) and (2,1) are present in a digraph, then it can be replaced by an undirected edge (1,2).
Graphs can have directed and undirected edges. Such graphs are mixed graphs. Figure 9.18

shows diagrams of digraph and mixed graph.

Fig 9.18: Digraph and equivalent mixed graph

Note: Most discussions in this module are focused on undirected graphs. Unless otherwise

mentioned, by graph we mean undirected graph.
We close the section by stating frequently used yet very simple results.

Theorem 9.1

The sum of the degrees of all vertices is twice the number of edges.

Proof:

Each edge is incident on two vertices. Hence each edge contributes to two degrees. If total

number of edges is e, then the sum of all degrees is 2e.

For example consider the graph in figure 9.17. Total number of edges is 5. The degrees of
vertices of the graph are 2,3,2,3 (beginning from top and in clockwise direction) their sum being

2+3+2+43=19 = 2*number of edges.

Considering the graph in figure 9.13, the number of edges is 8. The degrees of vertices v, to v; in

order are 3, 4, 3, 3, 2, 1, 0. The sum of degrees is 16 which is 2*8=2*number of edges.
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Theorem 9.2

The number of vertices of odd degree in a graph is always even.

Proof:

Suppose that d(x) denotes the degree of the vertex x in the graph. Group the vertices into even
and odd degrees. Then Za d(x) = Zeven d(y) +Zoaa d(2). From previous theorem left hand side of
the equation is an even number. Also first term on the right hand side is even. Hence the second
summation on the right hand side should also be even. But each d(z) in the summation is odd.
Hence total number of terms in the summation, Zoda d(z), should be even to make the sum even.

Therefore the number of odd degree vertices is even.

Theorem 9.3

Maximum number of edges in a simple graph of n vertices is n(n-1)/2

Proof:

You may observe that a simple graph with maximum number of edges is nothing but a complete
graph.

Let us draw simple graphs of 1,23, 4 vertices, with maximum number of edges.

B VAN

The maximum number of edges in the these graphs of 1, 2, 3, 4 vertices are 0, 1,2, 6 ... Thus in
an n vertex graph the maximum number of edges is n(n-1)/2. (This is nothing but the n"™ term of

the series 0, 1, 2,6 ...)

9.4 MATRIX REPRESENTATION

Although pictorial representation is simple and convenient, other representations are
better for computer processing. Graphs can also be represented in the form of a matrix. Many
derivations are easy with matrix representation. There are two types of matrix representation.
Incidence matrix or vertex edge incidence matrix is used to represent undirected graphs with no

self loops. This is vertex by edge binary matrix. The number of rows is same as number of

136



vertices and number of columns is same as number of edges. Given below are an undirected

graph and its incidence matrix.

abc de fgh
3 6 1000 1010 0
h b 200000111 1
V) L 4 30 000000 1
f c &4 1 101990
5001 10010
1 d 5 6L11000000
/
Fig 9.19: An undirected graph G Incidence matrix A(G)

Some observations on incident matrix:

1. Each column has two ls, since each edge is incident on two vertices. (No incident matrix

representation for graphs with self loops). Observe that column 1 has two ones at rows 4

and 6. (edge a is incident on vertices 4 and 6)

9. The number of 1s in a row is degree of the vertex. Observe that row has two 1s at column

d and f. (edges d and f are incident on vertex 1)

3. A row with only Os represent isolated vertex.
4. Parallel edges produce two identical columns. (columns 1 and 2 corresponding to parallel
edges a and b are identical)

As an alternative to incidence matrix, it is sometimes more convenient to use another
representation called adjacency matrix or connection matrix. Adjacency matrix can be used for
undirected graphs and digraphs. This cannot represent graphs with parallel edges. Self loops can
be represented. It is vertex by vertex matrix and also binary like incidence matrix. Adjacency
matrix X is defined thus: x;; = 1 if there is an edge from i to j and this entry is 0 in absence of the
edge. The adjacency matrices corresponding to the graphs in figure 9.3 (undirected graph) and

9.18 (mixed graph) are given below.

1 23 4 1 2 3 4

b e 1o 10 O

A4 1 1 211 Dt O

e B KR! ¢ L 31 %0 w1

41100 40 0 0 O
Adjacency matrix of Adjacency matrix of
graph in figure 9.3 graph in figure 9.18
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Observe that adjacency matrix of undirected graph is symmetric. Entries in diagonal
position are 1 only if there is a self loop. Degree of a vertex is number of 1s in the row or
column. For example, number of 1s in row 2 of matrix (on the left) is 3 (= degree of vertex 2 in
the graph of figure 9.3). In case of self loop the degree is number of 1s in the row plus one.

(Degree of vertex 1 is 5 = number of 1s in row 1 +1).

9.5 SUMMARY

In this unit an important concept called graph is introduced. Some interesting applications
are discussed here. Diagrammatic representation of a graph, types of graphs and matrix

representation of graphs also are discussed.

9.6 KEYWORDS

Diagrammatic representation of graphs, graphs-various types, incidence matrix, adjacency matrix

9.7 QUESTIONS

1. Draw a graph with 6 vertices having self loops, parallel edges, pendant vertices, isolated
vertices. Indicate each of these.

2. Mention some applications of graph theory.

3. Describe the origin of graph theory. .

4. Define complete graph, simple graph, and regular graph. Illustrate each one of these.
Also provide illustration for not complete, not simple and not regular graph. Give reasons
for each of the illustration.

5. What do you mean by infinite, null and weighted graphs?

6. Find the degree of each of the vertices in the illustrations of problem 2.

7. Find order and size of the graph for every illustration of problem 2.

8. Define adjacency of vertices and edges.

9. Draw digraphs and mixed graphs with 3, 4, 5 vertices.

10. Find incidence and adjacency of all graphs (whenever possible) you have drawn.
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UNIT - 10: PATHS AND CIRCUITS

Structure

10.0 Objectives

10.1 Isomorphism
10.2  Sub-graphs
10.3 Walks, paths and circuits

10.4 Connected graphs and components

10.5 Euler graphs

10.6 Hamiltonian circuits and paths

10.7 Summary
10.8 Key words

10.9 Practice problems
10.10 References

10.0 OBJECTIVES

After studying this unit, you should be able to

v

v
v
v
v

Solve some very interesting and practical problems

Discuss isomorphism, sub-graphs, connectivity and components

Discuss matrix form for these

To learn concepts like path, walk, circuit, Euler graph

Discuss Hamiltonian paths, circuits and travelling salesman problem - an

important application of graph theory

10.1 ISOMORPHISM

Isomorphism is similar to the concept of ‘congruent’ or ‘equivalent’ in geometry. Two

graphs G and G’ are called isomorphic if there is a one to one correspondence between their
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vertices and their edges preserve incidence relationship. In other words if an edge e is incident on
vertices v, and v in G, then the corresponding edge e’ in G’ must be incident on the vertices vy’

and v,’ that correspond to v; and v,. Given below (figure 10.1) is a pair of isomorphic graphs.

Vi
a/]
V3 _Q____y_z. V1’ d V4,
c |d
Va
1

Fig 10.1: Isomorphic graphs
The correspondence between vertices and edges in the graphs of figure 10.1 are as follows:
Vertices v, va, v, V4 correspond to vi’, v2', v3', v4'and edges a, b, c, d correspond to a’, b’, ¢’,
d'.

Given below are more graphs in figures 10.2 and 10.3.

Fig 10.2: Isomorphic graphs Fig 10.3: Not isomorphic graphs

Except for relabeling of vertices and edges, isomorphic graphs are the same, perhaps drawn
differently. It is not easy to discover isomorphism. Definition of isomorphism is as follows:
Isomorphic graphs must have: (i) The same number of vertices (ii) The same number of edges
(iii) An equal number of vertices with a given degree. However these are not sufficient. For
example the graphs in figure 10.3 satisfy all these and yet not isomorphic. This is because there
are two pendant vertices that are adjacent to a vertex of degree three in the graph on the left
whereas there is only one pendant vertex adjacent to the vertex of degree 3 in the graph to the
right. Hence these graphs are not isomorphic.

We now discuss the concept of isomorphism with the aid of matrix representation of graphs.
Graphs G and G’ are isomorphic if and only if their incidence matrices A(G) and A(G’) differ by
permutations of rows and columns.

As an example let us consider the following graphs of 4 vertices.
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2! r 1'
a b’l
2 3 3 4

c

Fig 10.4: Isomorphic graphs
These are isomorphic with correspondence as follows: Vertices 1,2,3,4 correspond to 3’, 2, 17,

4’. Edges a, b, ¢ correspond to a’, b’, ¢’. Let us examine their incidence matrices, which are

given below.

’ ?

a bec a bc
1 el 1501 00 0
2 1 0 211 1 0
31'1 00 3101 1
410" 10 410 0 1

Observe that after exchange of rows 1’ and 3° we see that matrix on right is same as that on the

left. Hence G and G’ are isomorphic.

10.2 SUBGRAPHS

A graph g is said to be a sub-graph of a graph G if all the vertices and all the edges of g

are present in G. A graph of 6 vertices and its sub-graph with 3 vertices are given in figure 2.4.

| 1 1
oo AT A/
6 5 2 3 2 2% 13 &5
Fig 10.5: Graph and a sub-graph Fig 10.6: Edge disjoint Fig 10.7: Vertex

sub-graphs disjoint sub-graphs

The concept of sub-graph is similar to that of subset. Sometimes the symbol “C” (g C G) is

used instead of the word sub-graph.

The following observations can be made immediately and without any difficulty.
1. Every graph is its own sub-graph.
2. A sub-graph of a sub-graph of G is also a sub-graph of G.
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3. Asingle vertex ina graph is a sub-graph.
4. A single edge together with its end vertices is a sub-graph.
Two or more sub-graphs that do not have any edge in common are called edge disjoint sub-
graphs. However they can have common vertices. Refer figures 2.4 and 2.5 for such examples.
Coming to matrix form, g is a sub-graph of G if A(g) is a sub-matrix of A(G). Sub-matrix
is one which is obtained after deletion of some rows and columns. As an example let us consider

the following graph and its sub-graph.

1 abcde f g b f
1111000 O 1(1 0
34 4 1 20000 1100 3lo 1
A 31001011 al1 1
Vg 3 40100010
Graph G Sub-graph g 55§ 001 0101

Incidence matrices of G and g

In the graph G assume that a, b, c, d, e, f, g are the edges (1,3), (1,4), (1,5), (2,3), (2,5), (3.4),
(3,5) respectively.

It is obvious that second (on the right) matrix is a sub-matrix of first one on the left.

10.3 WALKS, PATHS AND CIRCUITS

Walk is an alternating sequence of vertices and edges beginning and ending with vertices.
Also each edge in the sequence is such that its beginning vertex is the ending vertex of the

previous edge. No edge can appear more than once in a walk. Length of the walk is the number
of the edges in the walk.

Refer the graph in figure 10.5 with 6 vertices.
Examples:

1. 1,(1.2), 2, (2,5), 5, (5.3), 3 is a walk. It begins at 1 and ends at 3. Terminal vertices of

this walk are 1 and 3. These vertices are distinct. This walk is called open walk. Length
of this walk is 3.

1,(1,2), 2, (2,5), 5, (5,4), 4, (4,3), 3, (3,1), 1 is also a walk. Length is 5. Terminal vertices
are same. This is called closed walk.
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3. 3,(3,5), 5, (5,6), 6, (6,4), 4, (4,5), 5, (5,2), 2 is another walk. This is also an open walk.
Observe that vertex 5 is visited twice in the walk. Length of this walk is 5.
4. 1, (1,2), 2, (2,5), 5, (5,2), 2 is not a walk. This is because the same edge (2,5) (note that
(2,5) and (5,2) are the same edge) is traversed twice.
Path is an open walk with no vertex repetition in the sequence. That is no vertex is
revisited. Length of the path is the number of edges in the sequence.
Example 1 above is a path. The length of this path is 3.
Example 2 is not a path. Since terminal vertices are the same and hence not open walk. Example
3 although is an open walk is not a path since vertex 5 is revisited for a second time in the walk.
Notice that walks and paths are sub-graphs. In a path all vertices except the beginning and
ending are of degree two. The terminal vertices are of degree one.
A closed walk in which no vertex repeats more than once is called a circuit. In other
words circuit is a closed non-intersecting walk.
For example referring to the graph of six vertices in figure 10.5,
1,(1,2), 2, (2,5), 5, (5,3), 3, (3,1), 1 is a circuit of 4 vertices and 4 edges.
5, (5,6), 6, (6,4), 4, (4,3), 3, (3,1), 1, (1,2), 2, (2,5), 5 is another circuit of length 6
Observe that the degree of every vertex in a circuit is two. Other names for a circuit are cycle,
elementary cycle, circular path, loop. Note that every self loop is a circuit.
The definitions in this section are summarized in the figure 10.8 below. The arrows are in the

direction of increasing restriction.

Sub-graph

¥
Walk

=

Path Circuit

Fig 10.8: Walks, paths and circuits as sub-graphs
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10.4 CONNECTED GRAPHS AND COMPONENTS

The concept of connectedness is obvious. A graph is connected if we can reach any
vertex from any other by travelling along the edges. A formal definition of connectedness is as
follows:

A graph is said to be connected if there is at least one path between every pair of vertices.
Otherwise the graph is disconnected. The graphs in figures 2.8 and 2.9 are examples of

connected and disconnected graphs.

Fig 10.9: 7 vertex connected graph Fig 10.10: 7 vertex disconnected graph

Disconnected graphs consist of two or more connected sub-graphs. The graph in figure
10.10 has two connected sub-graphs. Each of these connected sub-graphs is called a component.
An easy way to find a component is to find all vertices that are reachable from a vertex v;.
Vertex v; and all the vertices of the graph that have paths to v;, together with all the edges
incident on them form a component. It is evident that a component itself is a graph. To be
precise, a component is a sub-graph of the given one. We now discuss some important theorems
on connectivity of a graph.
Theorem 10.1
A graph G is disconnected if and only if its vertex set V can be partitioned into two nonempty,
disjoint subsets V1 and V2 such that there is no edge connecting a vertex in V1 to any vertex in
V2.
Proof:
If: Assume a partition as described exists. We need to show that the graph is disconnected.
Consider two vertices x and Y, where x€ V1 and y € V2. Let us examine if there can be a path
from x to y. Note that a path from x to y requires connection between a vertex in V1 and some
vertex in V2. By assumption there is no such connection. Hence it is evident that there is no path

from x to y. That is the graph G is disconnected.
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Only if: Assume G is a disconnected graph. We need to prove that the described partition exists
in the graph.

Consider a vertex x in G. Let V1 be the set of vertices can be reached from x. Since G is
disconnected V1 does not include all vertices (follows from the definition of connectedness). The
remaining set of vertices will form a set V2. No vertex in V1 is joined to any vertex in V2. Thus

the partition V1 and V2 is found.

Theorem 10.2

If a graph (connected or disconnected) has exactly two vertices x and y of odd degree, there must
be a path joining these two vertices.

Proof:

Let G be graph with all even vertices except the odd vertices x and y. From theorem 1.2, which is
true for every graph and therefore for any component, no graph can have odd number of odd
degree vertices. Therefore in G, x and y must belong to the same component and hence there

should be a path between them.

Theorem 10.3
A simple graph (a graph having no parallel edges or self loops) G with n vertices and k
components can have at most (n-k)(n-k+1)/2 edges.
Proof:
Let ny, na,... ng be the number of vertices in the k components. Then nj+ny+... m=n. The proof
of tlie theorem depends on the following algebraic inequality.

nl<n®—(k-1)2nk) - (1)
From the theorem 9.3, we know that maximum number of edges in the i™ component is
ni(n;i-1)/2. Therefore the maximum number of edges in G is

Tni(ni-1)/2 = (n;)/2 —n/2
< [n* = (k-1)(2n-k)}/2 -n/2 (using inequality (1) above)
= (n-k)(n-k+1)/2

Observe that this theorem is generalization of theorem 9.3.

We close this section after a discussion of matrix form of disconnected graphs.
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If a graph G is disconnected (with no common vertex and common edge) with two components g
and g’ then A(G) will be in the form
Alg): 0

Fig 10.11: Disconnected graph

The incidence matrix is given by,

a b ¢ d e
171 1 1 0:0
2l1 0 0 1i0 Alg)! 0
310 1 0 1i0|= p-=-p-=="
410.0 1.0.:0 0 | Alg)
5/ 0 0 0 0:1
6L0 0 0 01

10.5 EULER GRAPHS

Euler is the founder of Graph theory. Euler solved the bridge problem, which was when
Graph theory became a subject of study. In fact in that paper, on the problem about the bridge, he
posed a more general problem. His problem goes as follows:
In what type of graph G is it possible to find a closed walk running through every edge exactly
once?
Such a walk is now called Euler line / Euler walk. The graph which contains an Euler line is
called an Euler graph. In other words if some closed walk in a graph contains all edges of the
graph, then the walk is called an Euler line and the graph an Euler graph. By definition walk is
always connected. Since Euler line contains all edges of the graph, an Euler graph is always

connected, except for any isolated vertex the graph may have. As isolated vertices do not
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contribute anything to concept of Euler line or graph, henceforth we assume that Euler graphs are
always connected. Next we prove an important theorem which will enable us to conclude if the

graph is Euler graph or not.

Theorem 10.4

A given connected graph G is an Euler graph if and only if all vertices of G are of even degree.
Proof:

If: Suppose that G is an Euler graph. G contains an Euler line. When the walk hits a vertex it
goes through two new edges; one we traversed to reach the vertex and the other through which
we exit through. In this process we encounter two new edges incident on a vertex, each time we
pass through. This is also true of terminal vertices. Thus every vertex is of even degree.

Only if: Assume all vertices of G are of even degree. Start the walk from an arbitrary vertex v.
Go to a neighboring vertex. Since every vertex is even, when we enter a new vertex x there is an
edge to exit from this vertex x. When you get back to v you have completed a closed walk h. See
if all edges are traversed. If so the graph G is Euler graph. If not, remove from G all those edges
which are part of h and obtain a sub-graph G’. Since G and h have all vertices with even degrees,
vertices of G’ are also of even degree. Moreover h and G’ must have a common vertex, since G
is connected. Find a closed walk j in G starting from a vertex w (this is possible since vertices of
G’ are all even). Construct a new walk combining h and w. This walk has more edges than h or j.
If all edges are covered then G is Euler. If not the above process is repeated until we obtain a
closed that traverses all edges of G. Thus G is an Euler graph.

Example: Follow the arrows to find a walk in the graphs below.

SRS,

Fig 10.12(a): Closed walk h  Fig 10.12(b): Sub-graph Fig 10.12(c): Combining h and j.
in G starting at v G’ and the closed walk j All edges covered. Numbers indicate
starting at w order of traversal of edges
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Now coming back to Konigsberg bridge problem recall figure 9.5, which is the graph
corresponding to the problem. Observe that degrees of vertices C and D (5 and 3 respectively)
are odd. Hence the graph is not Euler. Therefore a closed walk covering all edges does not exist.

One often encounters Euler graphs in various puzzles. The problem common to these
puzzles is to find how to draw a picture in one continuous line without retracing and without
lifting the pencil from the paper.

In defining Euler line some authors drop the requirement that the walk be closed. For
example the traversal 4, (4,6), 6, (6,5), 5, (5,4), 4, (4,3), 3, (3,5), 5, (5,2), 2, (2,1), 1, (1,3), 3 in
the graph of figure 10.5 includes all edges just once but starting and ending vertices are different.
This kind of walk is called open Euler line or unicursal line. A connected graph that has a
unicursal line is called unicursal graph. It is clear that by adding an edge between starting and
ending vertices of unicursal line we get an Euler line. Thus a connected graph is unicursal if and
only if there are exactly two vertices that are of odd degree. The generalization of this statement
is the following theorem. An interested reader can refer the text by Narsingh Deo for a detailed
proof.

Theorem 10.5
In a connected graph G with exactly 2k odd vertices, there exist k edge disjoint sub-graphs such

that they together contain all edges of G and that each is a unicursal graph.

10.6 HAMILTONIAN CIRCUITS AND PATHS

An Euler line is characterized by closed walk covering all edges exactly once.
Hamiltonian circuit is a closed walk going through each vertex exactly once except that first and

* last vertex in the tour is the same (recall definition of closed walk).

—»

Fig 10.13: Hamiltonian circuits
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The three graphs in the figure 10.13 are with vertices 5, 8 and 6 in number. s is the starting
vertex of the Hamiltonian circuit in each graph. Follow the arrow marks for the Hamiltonian
circuits in these graphs. Recall the definition of circuit in section 10.3. It is a closed walk where
no vertex repeats. In addition if the circuit includes every vertex it is Hamiltonian circuit. A
Hamiltonian circuit of n vertex graph consists of n edges. A graph can have many Hamiltonian
circuits. For example second graph in figure 10.13 has one more circuit indicated in dashed
arrows.

Not every graph will have Hamiltonian circuit. Two graphs (with vertices numbered) in

the figure next (figure 10.14) do not have Hamiltonian circuit.

F?g 10.14: Graphs with no Hamiltonian circuit

Hamiltonian circuits and Euler lines are different. Hamiltonian circuit is much more
complex. The problem of necessary and sufficient condition in a graph for the presence of
Hamiltonian circuit is still unsolved. This problem was first posed by Sir William Rowan
Hamilton and hence the name Hamiltonian circuit.
Hamiltonian path
If we remove the last edge from a Hamiltonian circuit, we get a Hamiltonian path. Hamiltonian
path is sub-graph of Hamiltonian circuit. Every graph that has Hamiltonian circuit should have a
Hamiltonian path. However not vice versa. That is there may be graphs with Hamiltonian paths
but yet no Hamiltonian circuits. For example both the graphs in figure 10.14 have Hamiltonian
paths. Follow the vertices beginning from 1 in the increasing order to get the Hamiltonian paths.
These are 1 to 2 to 3to 4 to 5 to 6 to 7 and 1 to 2 to 3 to 4 respectively. Note that length of
Hamiltonian path is n-1 in an n vertex graph.
In considering existence of Hamiltonian circuits or paths we need only consider simple graphs.
This is because a Hamiltonian circuit or path traverses each vertex only once. Hence it cannot

include parallel edges or self loops. Thus it may be sensible to remove parallel edges and self
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loops before looking for a Hamiltonian circuit. Finally not all graphs have Hamiltonian paths.

Graphs below in figure 10.15 are examples of graphs that do not have Hamiltonian paths.

L ]
L

Fig 10.15: Graphs not having Hamiltonian paths

Complete graph was discussed in unit 9. It is nothing but a simple graph with edges
connecting every pair of vertices. This is also referred to as universal graph or a clique. Every
vertex is joined to every other vertex in a complete graph. Hence the degree of every vertex in
complete graph of n vertices is n-1. Also the number of edges in a complete graph of n vertices is
n(n-1)/2 (refer theorem 9.3).

It is easy to construct a Hamiltonian circuit in a complete graph. Let the vertices be
numbered 1 to n. Traverse the vertices in the order 1 to 2 to 3 ... n-1 to n to 1. A graph may
contain many Hamiltonian circuits. Number of edge disjoint Hamiltonian circuits is an unsolved

problem. However something can be said about this number in some graphs.

Theorem 10.6

In a complete graph with n vertices there are (n-1)/2 edge-disjoint Hamiltonian circuits, if n is
odd and = 3.

Proof:

In a complete graph of n vertices there are n(n-1)/2 edges. A Hamiltonian circuit in an n vertex
graph has n edges. Hence number of edge-disjoint Hamiltonian circuits cannot exceed (n-1)/2.
That there are (n-1)/2 edge disjoint Hamiltonian circuits if n is odd can be shown as follows:
Here we propose an informal proof for the above statement. Let us find the number of
Hamiltonian circuits in complete graphs of 3, 5, 7 vertices. Later we conclude by extrapolation

for n vertices.
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5
Fig 10.16: Complete graphs of 3, 5 and 7 vertices

The edge-disjoint Hamiltonian cycles in these graphs are:
3 vertex graph: 1, (1,2), 2, (2,3), 3, (3,1), 1 (only one [(3-1)/2] Hamiltonian cycle)
5 vertex graph:
1,(1,2),2,(2,3),3,(3,4), 4, (4,5),5(5,1), 1;
1,(1,3), 3,(3,5),5,(52), 2,(2,4), 4, (4,1), 1 (two [(5-1)/2] cycles
1, (1,2), 2, (2,3), 3,(3,4), 4, (4,5), 5, (5,6), 6, (6,7), 7, (7,1),1;
1,(1,3),3,(3,5),5,(57),7,(7,2),2,(2,4), 4, (4,6), 6, (6,1), 1;
1, (1,4), 4, (4,7),7, (7,3), 3, (3, 6), 6, (6,2), 2, (2, 5), 5, (5, 1),1 (three [(7-1)/2] cycles)
Hence number of edge disjoint cycles in an n vertex complete graph is (n-1)/2, if n is odd and
greater than 1.
Travelling salesman problem

A problem closely related to the question of Hamiltonian circuits is travelling salesman
problem, stated as follows: A salesman is required to visit a number of cities during his trip.
Given the distances between the cities, in what order should he travel so that he visits each city
exactly once and return home, with the minimum distance travelled?

Representing the cities by vertices and the roads between cities as edges, we get a graph.
In this graph, edges are weighted, weights being distances between cities. In our problem, if each
of the cities has a road to every other city, we have a complete graph and there are numerous
Hamiltonian circuits. The tour of the salesman is after all a Hamiltonian circuit beginning at
starting city and ending at the same city. We are to pick that cycle whose sum of distances is
minimum. The total number of Hamiltonian cycles (not necessarily edge disjoint ones) in
complete graph is (n-1)!/2. This follows from the fact that there are n-1 choizes of cities at first

(starting) city, n-2 at the second city and so on. These being independent choices, we get (n-1)!
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possible number of choices. This number is to be divided by 2 since each cycle is counted twice.
(Remember the graph is not directed. The cycle 1 to2to3 ... nto l issame as l tonton-1to ...
3to2tol).

Theoretically the travelling salesman problem can be solved by finding all cycles and its
distances and the minimum distance cycle can be chosen. However for a large value of n, it is too
tedious to find all cycles. The problem is to find a manageable algorithm to find a solution in
reasonable time. No such algorithms exist. This being a very important problem in Operations
Research, many attempts have been made. There are some good heuristic algorithms available.
These heuristic methods may not give us an optimal solution. But will definitely get one very
close to optimal solution, called near optimal solutions.

Various types of walks and circuits discussed in this unit are classified in the following

diagram.

Walk

Unicursal Circuit Euler

line line
Hamiltonian Hamiltonian Arbitrarily
path circuits traceable

10.7 SUMMARY

The unit begins with isomorphism of graphs. Concepts like walks, paths, circuits and
Euler graphs are discussed with ample examples. Connectedness is an important concept useful
for many applications. This idea is discussed in length here also giving the matrix structure of
disconnected graphs. Special circuits and paths called Hamiltonian circuits and Hamiltonian

paths and a very important problem in computer science are discussed in detail.
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10.8 KEYWORDS

Isomorphism, sub-graph, walk, path, circuit, connected graphs, Euler graphs, Hamiltonian

circuit, travelling salesman problem

10.9 QUESTIONS

1. Draw graphs of 4 and 5 vertices that are isomorphic.

2. State the conditions for graphs to be isomorphic.

N

Draw graphs that satisfy all 3 conditions of isomorphism and yet not isomorphic.
State the reasons why they are not isomorphic.

Define sub-graph and provide examples.

Draw a graphs and sub-graphs that are edge disjoint and that are vertex disjoint.
Define walks, paths, circuits. [llustrate.

[lustrate closed and open walk.

Distinguish circuit and walk. Give examples.

RC I GO SO

Comment about the degrees of vertices in walks, paths and circuits.

10. Define connected graph. Give examples of connected and disconnected graphs with
various numbers of vertices.

11. What is component?

12. State and prove the necessary and sufficient conditions for a graph to be dis-
connected.

13. If a graph has exactly two vertices that of odd degree, prove that there must be path
connecting these two.

14. What is the maximum number of edges in a simple graph of n vertices and k
components? Justify your answer. Also draw some graphs and verify.

15. What is Euler graph? Draw one that is Euler and one that is not.

16. State and prove the theorem on Euler graphs.

17. What is Hamiltonian circuit? Why are they called so?

18. Distinguish Hamiltonian circuit and Euler line. Give examples.

19. Define unicursal line. Illustrate.
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20. Comment on the maximum number of edge-disjoint Hamiltonian circuits. Verify your
statement in some graphs.

21. What do you mean by Hamiltonian path? Give an example.

22. What can you say about presence of Hamiltonian circuit and path?

23. State the problem of travelling salesman. How is this similar to Hamiltonian circuit?

24. Why is travelling salesman problem difficult to solve by enumeration?
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UNIT - 11: PLANAR GRAHS AND COLORING

Structure

11.0 Objectives

11.1 Introduction

11.2 Planar graphs
11.2.1 Kuratowski’s graphs
11.2.2 Detection of planarity

11.3 Chromatic number of a graph
11.3.1 Proper coloring
11.3.2 Chromatic partitioning

11.4 Matching

11.5 Keywords

11.6 Summary

11.7 Questions

11.8 References

11.0 OBJECTIVES

After studying this unit, you will understand
v Concepts of planar graphs
Conditions for a graph to be planar

v

v Coloring of vertices

v" Chromatic number of graphs and some important results
v

A special graph called bi-partite graph

11.1 INTRODUCTION

In this unit, we discuss planar graphs. The question of planarity is of great significance in
many practical situations, such as printed circuit board (to determine if a single layer is sufficient
to make all connections), proper coloring of a graph and the partitioning of vertices. Partitioning
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of vertices has many practical applications such as coding theory, state reduction of sequential

machines etc.

11.2 PLANAR GRAPHS

You may be aware that a graph is an abstract object of vertices and edges and often it is
represented by a geometric figure in a plane. For example graph G with vertex set V= {a,b,c,d}
and edge set E={(a,b), (a,c), (a,d), (b,c), (b,d), (c,d)} is complete graph of 4 vertices and can be
represented by the figures (11.1 to 11.3) below.

a b a b d c

Figs 11.1, 11.2 and 11.3: 4 vertex complete graphs
There are numerous other possible representations.
Definition- embedding

Geometric representation of a graph on any planar surface (board, paper etc) without

edge intersection is called embedding.
!

Definition- planar graph

A graph G is said to be planar graph, if there exists some geometric representation of G
which can be drawn on a plane such that no two of its edges intersect. Alternatively, a graph is a

planar graph if one of the geometric representations is an embedding.

Note that the 4 vertex complete graph is planar although the graph in figure 11.1 is not
embedded. Note that the graphs in figures 11.2 and 11.3 are embedded. Thus the 4 vertex

complete graph is planar.
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Example

The graphs G, G; given in figures 9.4 and 9.5 are isomorphic (can be called identical).
The representation in figure 9.4 is an embedding whereas the figure 9.5 shows non-embedded

version of the graph. Thus the graph is planar.

Fig 11.4: Graph G, Fig 11.5: Graph G;
Example

Observe the graphs Gy, G, and G3 below with 10 vertices and 15 edges in figures 9.6,9.7
and 9.8. The graphs are isomorphic. The graphs in figures 9.7 and 9.8 are different representation
of G, in figure 9.6. But none of the geometric representation is embedded. In fact there is no

embedded version of the graph. Thus it is non-planar.

Fig 11.6: Graph G, Fig 11.7: Graph G;  Fig 11.8: Graph G;
Following are the steps to determine if the given connected graph G is planar.
1. If the geometric representation of the graph in a plane is embzdded then conclude G it

is planar and exit. Else go to step 2.
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2. Find a new geometric representation G; by redrawing the graph G such that G and G,
are isomorphic. If none exists conclude G is non planar. Else go to step 3.

3. If G, is embedded then conclude G planar and exit. Else repeat step 2.

11.2.1 KURATOWSKI’S GRAPHS

Now we discuss an important theorem on planar graphs, called Kuratowski’s theorem.
Kuratowski is a Polish mathematician who stated a unique property of non planar graphs.
Theorem 11.1
A complete graph of 5 vertices, called Ks (Kuratowski’s first graph) is non planar.

Proof

Let the vertices be a, b, ¢, d, e. join adjacent vertices. Now we have a pentagon. Join a, ¢ and a,
d. edges (b, e) and (b, d) can be drawn outside the pentagon. Thus 9 edges have been drawn
without intersection (refer figure 11.9). The last edge (c, ¢) cannot be drawn without intersecting

one or the other previously drawn edges.

Fig 11.9: K5 with 9 edges

Theorem 11.2

A regular connected graph with 6 vertices and 9 edges, called K33 (Kuratowski's second graph)
is non planar.

Proof

A regular graph degree of vertices are equal. 6 vertex regular graph with 9 edges is shown in
figure 11.10. This representation is non planar. Let us try to redraw the graph. Let G; be the
redrawn graph. After 8 non-intersecting edges the last edge (b, ¢) can neither be drawn inside or
outside the hexagon without intersecting some of the previously drawn edges. Thus K33 is non

planar. Refer figure 9.12 for G; with 8 non-intersecting edges.
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Fig 11.10: K33 Fig 11.11: Redrawn K33, with 8 non-intersecting edges
Some observations on Kuratowski’s graphs are:

1. Both Ks and K3 3, are regular.
Both are non planar.
Removal of one edge makes it planar.

Ks is a non planar graph with smallest number of vertices.

SR Ot

K33 is the non planar graph with smallest number of edges.

11.2.2 DETECTION OF PLANARITY

Here we discuss algorithmic way of detecting planarity. The previously discussed method
of redrawing is not efficient. We now give the steps to be executed find if a graph is planar.

1. A disconnected graph is planar if and only if each of its components is planar. We check
planarity of only connected graphs. Also a separable graph is planar if and only if each of
its blocks is planar. Hence for the given graph G we first find its non separable blocks Gy,
G,, ... Gy. Steps 2 to 4 detect planarity of a non separable block G;.

2. Since addition or removal of self loops does not affect planarity, remove self loops.

3. Since parallel edges also do not affect planarity, remove all but one edge of the parallel
edges.

4. Elimination of a vertex of degree 2 by merging two edges in series does not affect
planarity. Hence eliminate all edges in series.

After these steps the graph G1 (separable block) is reduced to HI.
Theorem 11.3
Graph H; is:
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1. A single edge or

2. A complete graph of 4 vertices or

3. A non separable simple graph with #n>5 and e <7.

Example _

Figure 11.12 is 5 vertex 7 edge graph. Figures 11.13 to 11.16 show reductions. The graph is
reduced to a single edge. Edges are labeled 1 to 7 in G;.

. 7 4 4,7
4 3 4 3 W:ﬁ
L E
Fig 11.12: Gy Fig 11.13: Adjacent  Fig 11.14: Parallel Fig 11.15 Fig11.16

vertices reduced edges reduced Adjacent  Parallel
vertices edges
reduced reduced

From now on, we therefore need to investigate only simple connected non separable graphs of at
least five vertices and with every vertex of degree three or more. Next we check if e < 3n-6. If
not, graph is non planar. If the inequality is satisfied we have to test the graph further using the
theorem given next.
Definition- Homeomorphic graphs

Two graphs are said to be homeomorphic if one graph can be obtained from the other by
the creation of edges in series or by merger of edges in series. Note that the graphs in figures
11.12 to 11.16 are homeomorphic. = A graph is planar if and only if every graph that is
homeomorphic to G is planar.
Theorem 11.4
A necessary and sufficient condition for a graph G to be planar is that G does not contain either

of Kuratowski’s graphs or any graph homeomorphic to either of them.

11.3 CHROMATIC NUMBER OF A GRAPH

We now address the next important concept of this unit, coloring and chromatic number.
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11.3.1 PROPER COLORING

Suppose a graph has n vertices. Suppose we are faced with the task of painting the
vertices so that no two adjacent vertices have the same color. The determination of least number
of colors is the coloring problem. We introduce and define some terminologies.

Proper coloring

Painting all the vertices of a graph with colors such that no two adjacent vertices have the same
color is called proper coloring.

Chromatic number

A graph G that requires a minimum of k different colors for its proper coloring is called k-
chromatic graph. The number £ is called the chromatic number of the graph.

Example

Fig 11.17: Graph of 7 vertices properly colored with 7 colors
Colors used: r-red, g-green, p-purple, m-magenta, y-yellow, o-orange, b-blue
Note that not all 7 colors are needed for proper coloring of vertices. For instance, instead of

magenta purple could be used for that vertex.

Fig 11.18: Proper coloring with 6 colors for the graph in figure 11.17
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Fig 11.18: Proper coloring with 3 colors (minimum number) for the graph in figure 11.17
Note that the minimum number of colors needed is 3. Thus chromatic number of G = 3.

In coloring graphs there is no point in considering disconnected graphs. How we color
vertices in one component of a disconnected graph has no effect on coloring other components.
Hence it is enough if we investigate coloring in a connected graph. All parallel edges can be
replaced by a single edge. For determination of chromatic number we reduce the graph to simple
graph. Some observations that follow directly from the definitions stated.

1. Graph which is just one vertex is l1-chromatic.

2. A simple graph with one or more vertices is at least 2-chroamtic.

3. A complete graph of n vertices is n-chromatic.

4. A graph of simply one circuit is with n >3vertices is 2-chromatic. If n is even and 3-

chromatic if n is odd.

5. Chromatic number of tree with 2 or more vertices is 2.

We now state a very important result on chromatic number: If dpgy is the maximum degree of
all vertices in G then chromatic number of G < I+d,u; and if G has no component graph of

1+dpmayx vertices then chromatic number of G < d,,,.

11.3.2 CHROMATIC PARTITIONING

In this section we discuss a partitioning of vertices of graph induced by proper coloring.
We begin the section with special graph called bipartite.
Definition
A graph G is bipartite if its vertex set V can be decomposed into two disjoint subsets V, and V,
such that every edge in G joins a vertex in V| to a vertex in V,. Note that every tree is bipartite
graph. Clearly every 2-chromatic graph is a bipartite graph. The two colors create a partition of

the vertex set. In generalizing this concept a graph G is called p-partite if its vertex set can be
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portioned into p disjoint subsets V, V, ... V; so that no edge in G joins the vertices in the same
subset. Clearly k-chromatic graph is p-partite if and only if k < p.

Chromatic partitioning

Proper coloring of a graph induces a partitioning of the vertices. If minimum number of colors
are used the partition is called chromatic partitioning. For instance the chromatic partitioning of
the graph in figure 11.8 is {1, 3, 4, 6}, {2, 5}, {7}. No two vertices in any of the subset of the
partition are adjacent. These are independent sets. However if no vertex can be added to any
subset without destroying its independence property then it is called maximal independent set.
For instance {7} is not maximal independent set, since vertex 1 can be added without destroying
the independence property; but {1, 3, 4, 6} is maximal independent set. Independence number is
the number of vertices in the largest independent set. For instance the independence number of
the graph in figure 11.18 is 4. This number is denoted by B(G). We know state an important
result connecting independence number and chromatic number. If chromatic number of a graph
with n vertices is k then B(G) > n/k. As an example consider the graph in figure 11.18. In this
graph n=7, k=3 and B(G) = 4. It is easy to verify B(G) = n/k.

11.4 MATCHING

This unit is concluded with a discussion on matching. Suppose there are 4 applicants (i,
for i=1 to 4) for 6 vacant positions (p;, j= 1 to 6). Vacant positions and applicants can be denoted
by vertices. The edges joining a; and p; denote that i™ applicant is suitable (qualified) for position
j. The graph is bipartite. The question we have is identifying maximum number of positions that
can be filled by applicants. This problem is called matching (or assignment) of one set of vertices
into another. More formally matching is a subset of edges in which no two edges are adjacent. A
maximal matching is a matching to which no edge can be added. The graphs given in the figures

below illustrate these concepts.

AN/ N

Fig 11.19: A graph (to the left) and two matching

164



Fig 11.20: Graph G Fig 11.21: Two matching Fig 11.22: Maximal
Matching

Although matching is possible in any graph, it is mostly studied in bipartite graph. In a

bipartite graph with vertex partitions V; and V», a complete matching is where no vertex in V, is

left out. That is there are edges incident on vertices of V. Refer figures below for illustrations of

matching.
b L]
s g . 2
° @
:/
i ,
vV, Vi Vi Vs

Fig 11.23: Complete matching Fig 11.24: A matching

For the existence of a complete matching, of V| into V5 the number of vertices in V; < number of

vertices in V5. But this is not sufficient. Refer figure below for illustration of this point.

ad

——

Vi V,
Fig 11.25: No complete matching possible in this bipartite graph

The complete matching is not possible because two applicants qualify for only one job

(identical). Hence only one of these edges should have to be excluded from the matching set.
Then not vertices of V; are matched into vertices of V.
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11.5 SUMMARY

In this unit a detailed discussion of planar graph, steps of reduction for checking planarity
and conditions for planarity is done in section 11.2. Section 11.3 describes another useful
concept namely coloring, chromatic number and independence number. The unit is closed with a

discussion of matching, complete matching and conditions for complete matching.

11.6 KEYWORDS

Planar graphs, Kuratowski’s graphs, Theorems on planarity, Detection of planarity, Proper

coloring, Chromatic number, Chromatic partition, Independence number, Matching

11.7 QUESTIONS

1. Define and illustrate planar and non planar graphs.

2. Write the steps for checking planarity.

3. Show that Kuratowski’s graphs are non planar.

4. State theorems on planarity.

5. What is proper coloring?

6. Draw a graph of 7 or more vertices with 9 or more edges. Show proper coloring and what

is the chromatic number?

7. Show the relation between independence number and chromatic number in the above
graph (in problem 6).

8. Define matching and complete matching. Illustrate.

9. State the necessary condition for complete matching. Show that it is not sufficient.
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UNIT - 12: GRAPH ALGORITHMS

Structure

12.0 Objectives

12.1 Introduction

12.2 Tree

12.3 Spanning tree

12.4 Minimum weight spanning tree
12.4.1 Algorithms to find minimum weight spanning tree

12.5 Searching graphs
12.5.1 Depth first search
12.5.2 Breadth first search

12.6 Summary

12.7 Keywords

12.8 Questions

12.9 References

12.0 OBJECTIVES

After studying this unit, you will

v Come to know about the special graph called tree

v Understand what a spanning tree is

v Understand minimum weight spanning tree computation and applications

v Get to know the search methods

12.1 INTRODUCTION

In this unit we describe a graph structure called tree and state some interesting properties
of trees. Spanning tree is important structure with many applications. Spanning tree is discussed

and two algorithms for finding minimum weight spanning tree are discussed in length. Searching
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graphs is another important procedure in computer science. Two search procedures, depth first

and breadth first are also discussed in the end of the unit.

12.2 TREE

Tree is a special graph. The concept of tree is very important in graph theory and also in
many applications of computer science. Also tree is an important data structure in computer
science.

Definition
Tree is a connected graph without any circuits. The graphs in figure 12.1 are all trees with

varying number of vertices.

1k T2 T3 T4 5

Fig 12.1: Trees with different number of vertices

Parallel edges and self loops form circuits. Hence, it is obvious that trees are simple graphs.
Trees can be infinite as graphs. But our discussions focus on finite trees only.
Applications

Trees are useful in describing any structure which involves hierarchy. Familiar examples
of such trees are family trees, decimal classification of books in a library, the hierarchy of
positions in an organization, an algebraic expression involving operations which comes with
precedence, sorting of mails according to PIN code etc. Figure 12.2 shows mail sorting prbcess
as a tree diagram. All mails arrive at a local office N. PIN codes of mails are read at N. Mails
are first sorted using the most significant digit in the PIN code and are divided into 10 piles NO,
N1, ...N9. Each pile is then divided into 10 piles and this'continues for 4 more times (the number
of digits in a PIN code is 6).

Fig 12.2: Mail sorting process
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We now state some useful properties of trees in this section. These properties can also be

treated as alternate definitions of a tree.

A graph G with n vertices is called a tree if

1.
2
3
4

S,

G is connected and is circuitless, or

G is connected and has n-1 edges, or

G is circuitless and has n-1 edges, or

There is exactly one path between every pair of vertices, or

G is minimally connected graph.

Another interesting property we state here again without proof.

A tree (of two or more vertices) has at least two pendant vertices. Note that this true of al trees in

figure 12.1.

12.3 SPANNING TREE

graph.

In the previous section we discussed graphs which are trees. In this unit we identify a tree in a

Definition

Let G be a graph. A spanning tree is a tree connecting all vertices of G.

Examples

Given below in figure 12.3 are some graphs and spanning trees for each graph.

V3

Vi Vi Va Vi Va
Va E —

3 V2 V3 v V3

Fig 12.3(a): Graph (b) Spanning tree T, (c) Spanning tree T
5y a
b c
b c
5
d d
Fig 12.4 (a): Graph (b) Spanning tree T;  (c) Spanning tree T,
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Finding a spanning tree

Finding a spanning tree in graph is easy. If G has no circuit, then it is a spanning tree. If
G has a circuit, delete an edge from the circuit. This will still leave the graph connected. If there
are more circuits, repeat the above operation until there are no more circuits. As the resulting
graph is connected and has no circuits, it is a tree and has all vertices. Thus a spanning tree in G
is found.
Let us go back to the graph in figure 12.3 (a). Self loop at v, is a circuit. Remove the self loop.
Edges (v1, v2), (v2, v3) and (v3, v;) form a circuit. Remove an edge say (vi, v2) from this circuit.
There is a set of parallel edges between v, and vi. This is also a circuit. Remove one of the
edges. Edges (va4, v2), (v2, v3) and (v3, v4) form a circuit. Remove an edge say (v3, v4) from this

circuit. What we have is spanning tree T in figure 12.3 (b).

We now discuss some elementary properties of a spanning tree.

Theorem 12.1

Every connected graph has at least one spanning tree.

This is evident from the previous discussion of finding a spanning tree in a graph.

An edge in a spanning tree is called as branch and the edges not in the spanning tree are
called chords. Refer figure 12.3 (a) and the spanning tree T,. The branches of this spanning tree
are (v4, va), (v2, v3) (one of the parallel edges) and (v3, v2). Chords are self loop at v, (vi, v2), (v,
v4) and one of the parallel edges between v; and v;. The number of vertices in the graph is 4. The
number of edges is 7. The number of branches is 3 and the chords are 4 in number. The
following theorem is a formal statement of these details.

Theorem 12.2
With respect to any of its spanning trees, a connected graph of n vertices and e edges has n-1 tree
branches and e-n+1 chords.

This has been verified in figure 12.3 (a) in the previous paragraph.

12.4 MINIMUM WEIGHT SPANNING TREE

As discussed in the previous section a spanning tree is a minimally connected sub-graph
of a graph. If there are real numbers associated with edges we call such a graph as weighted

graph. A spanning tree of a weighted graph is a weighted tree. The weight of the tree is the sum
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of weights of all edges in the tree. We already discussed that a graph can have many spanning
trees and each having different weights. In this section we give examples of weighted graphs and
find some weighted spanning trees of the graphs. Figure 12.5 below has some weighted graphs

and spanning trees with associated weights.

Fig 12.5 (a): Weighted graph (b): Spanning tree T (c): Spanning tree T

The spanning tree in figure 12.5 (b) has weight 4+12+2+3+5+10 = 36 and the spanning tree in
12.5 (c) has weight 4+1+2+3+5+10 = 25. There may be many more spanning trees each with
their own weight. A spanning tree with minimum weight is called minimum weight spanning
tree or shortest spanning tree or shortest distance spanning tree or minimal spanning free.
Often this minimal spanning tree is of interest. One possible application of the shortest spanning
tree is as follows: Suppose that we are to connect n cities 1, 2, 3, ..., n through a network of
roads. The cost of building road between city i and city j be ¢;;. These are weights of the network
of roads, which is our graph. The question is ‘what is the minimum expense of connecting all
cities by a network of roads?’ This can be solved by finding minimal spanning tree. This sub-

graph connects all cities and at the same time cost of this network is least.

12.4.1 ALGORITHMS TO FIND MINIMUM WEIGHT SPANNING TREE

Here we discuss two algorithms to find minimum weight spanning tree one proposed by
Kruskal and the other by Prim.
Kruskal’s method
List all edges of the graph in the order of non-decreasing weights. Pick edges (one at a time from
this list) corresponding to these weights and add them to the partial tree if it does not form a

cycle with previously selected edges. Stop selection once you have collected n-1 edges
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(assuming graph has n vertices). The edges selected will form a spanning tree and has minimum

weight.

Prim’s method

This algorithm does not requige ordering of edges according to weights. Also a check on whether
a cycle is formed is not needed, as proposed by Kruskal. Suppose that the graph has n vertices.
Prim’s method requires you to tabulate the weights of edges in an n x n array (like adjacency
matrix; but entries are not binary. They are weights of edges) called weight matrix. Diagonals in
this matrix are blank. Note that even if there is self loop with least weight we won’t select it in
the tree because it forms cycle. So the diagonal elements in the weight matrix are left blank. Also
it is evident that the matrix is symmetric. Set the weights of the non-existent edges to be infinity.
Start from vertex 1 and connect to its nearest vertex say i. The vertices in the tree are |1 and 7 and
the only edge is (1, i). Next find a vertex nearest to 1 or i, say j (assume (i, j) is smallest weights
of all edges incident on 1 and i) and make a connection from i to j in the tree. Now, the tree has
vertices 1,7 and j and edges (1,i) and (iy). As we always add a new vertex to the tree, checking
for cycle formation is not needed. Continue this process until all vertices are included in the tree.
What we have then is a minimum weight spanning tree.

Let us run (hand simulate) these algorithms on a graph given in figure 12.6.

Fig 12.6: Graph G of 6 vertices a to fand 10 edges

Kruskal’s method

As a first step we order the edges according to their weights. The order is {(e,f), (d,f), (a,e), (a,d),
(d,e), (a,c), (c,d), (a,f), (a,b), (b,e)} with weights {1, 3,4,5,5,6,7,8, 11,12}

The table below shows selection of edges from the list above that makes up the spanning tree.

One edge from the list is added to the tree at a time.
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Edge Weight Total weight so far
(e,h) 1 1
(d,f) 3 4
(a,e) 4 8
(a,d) — not | - 8
selected.

(d,e)-not - 8
selected

(a,c) 6 14
(c,d)-not - 14
selected

(a,f)-not - 14
selected

(a,b) 11 25

Spanning tree is complete as five edges (the graph has 6 vertices) are selected already and its
weight is 25. The edges in the spanning tree are (e,f), (d.f), (a,e), (a,c) and (a,b). The spanning

tree is shown in figure 12.7.

Fig 12.7: Kruskal’s spanning tree

Prim’s method

Here we need to prepare a matrix of weights.

a b ¢ d e f
"af- 11 6 5 4 8 O
b1l - o o 12 e
c[6 o - 7 o o
d{5 e 7 - 5 3
el4 12 « 5 - 1
f|8 o o 3 1 -

\ )
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vertices is shown in the table below.

Begin the tree with vertex a and add one new vertex to the tree at a time. The order of addition of

Vertices in | Min weight edge | Total weight
the tree and weight so far

a (ae): 4 4

a.e (e,f): 1 5

a.e,f (d,f): 3 8

a,e,f,d (a,c): 6 14

a,ef,d,c (a,b): 11 25

Figure 12.8 is the spanning tree of Prim’s method.

Fig 12.8: Spanning tree of Prim’s method
Note that both the methods have generated the same spanning tree; this need not be so in all

cases. However, the total weight of both the trees will be the same.

12.5 SEARCHING GRAPHS

In this section we discuss two powerful techniques to systematically traverse all edges of
a given graph such that each edge is traversed only once and each vertex is visited at least once.
This search procedure is useful for answering many questions about the graph such as
connectedness, separability, planarity, etc. The two procedures are discussed in the flowing sub

sections.

12.5.1 DEPTH FIRST SEARCH

In depth first search method, we traverse edges by moving from a vertex along a new

edge to next vertex (or same vertex if self loop is traced) and repeat the above step until no more
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edges are left. This method of traversing the graph is called depth first search. The outline of the

search algorithm is given below.
Algorithm DFS

Input: Adjacency matrix/edge list, number of edges num-edge

Output: Ordered set of edges

1.

ERNCAE P TS

Select a vertex to start say v
For i=1 to num-edge
edge(i)="" // Array edge will give us the order in which edges are traversed in DFS
edge-count =0
If edge-count = num-edge then Output edge and exit
If there is a new (not in edge array) edge (v, x) or (x, v) incident on v then
7. Move to the vertex x
8 vex
9. edge-count=edge-count+1
10. edge (edge-count) = (x, v)
11. Go to step 5

12. Else (v is a dead end and hence back track)

13. Else v¢— u where u is the vertex from where we reached v; Go to step 5.

Examples

Consider the graph in figure 12.9. Suppose we start at vertex a.

Fig 12.9

One order of traversal is (a, e), (e, b), (b, a), (a, d), (d, b), (b, c), (c, ). Here the start vertex is a.
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Consider the graphs in figures 12.10 and 12.11. Both are trees of three vertices. In the graph of
figure 12.10 the DFS traverses the edges (a, b), (b, ¢) and (back track to b) (b, d). In the figure
12.11 DFS when it starts at a, traversal is in the order (a, c), (c, b), (b, d); whereas with the start

vertex c, the traversal is in the order (c, a), (back track to c) (c, b), (b, d).

a b c a
Fig 12,10 Fig 12,11 B L

12.5.2 BREADTH FIRST SEARCH

Ty
In breadth first search, once at a vertex v we scan all edges‘incident on v and then move
to an adjacent vertex w. At w we scan all edges incident on w (and those not traversed) and this
process continues until all edges are scanned.
Algorithm BFS
Input: Adjacency matrix/list of edges, number of edges num-edge
1. Select a vertex to start say v
2. Fori=1to qum-edge
3. edge(i)=""* // Array edge will give us the order in which edges are traversed in BFS
4. edge-list = null //list of traversed edges is empty
5. edge-count=0
6. If edge-count=num-edge then
7. Output edge and exit
8. While x is adjacent to v and (v, x) or (x, v) not in edge-list
9. Traverse edge (v, x)
10. Add (v, x) to edge-list
11. edge-count=edge-count+1
12. edge(edge-count)=(v, x)

while at step 8 ends
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13. Select w adjacent to v so that there is an edge (w, x) not in edge list.

14, ve—w

15. Gotostep 6
Examples
Consider the graph in figure 12.9. Suppose we start at vertex a. The traversal order is (a, b), (a,
d), (a, e), (b, d), (b, ), (b, c), (c, €)
In graphs of figure 12.10 with the start vertex b the order of traversal is (b, a), (b, ), (b, d). If the
start vertex is a then order of traversal is (a, b), (b, c), (b, d). In the graph of figure 12.11 if we

start at vertex b the traversal is (b, ¢), (b, d), (c, a).

12.6 SUNIMARY

The unit began with discussion on tree and its properties. Spanning tree of any graph is
introduced next. For a weighted graph each spanning tree will have varying weights. Two
algorithms to find the minimum weight spanning tree are discussed. Finally in the last section the

search methods depth first and breadth first are describes in detail.

12.7 KEYWORDS

Tree, Spanning tree, Weighted graph, Minimum weight spanning tree, Kruskal and Prim’s

methods, Depth first traversal, Breadth first traversal

12.8 QUESTIONS

1. Define a tree

Enumerate the properties of trees

Verify all properties in various example trees.
Define and provide examples of spanning trees.

What is weighted graph? Draw some and find the weights of each.

@ A g

What is minimum weight spanning tree? Find this in each of the graph in the previous
question.

7. Mention some applications of search methods.
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8. Explain the two search procedures with examples.
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13.0 OBJECTIVES

When you go through this unit, you will be able to
v" Explain semigroup, monoid and group;
v" Give an account of the properties of a group;

v Analyze some theorems on group.

13.1 INTRODUCTION

Semigroups are the simplest algebraic structures which satisfy the properties of closure
and associativity. They are very important in the theory of sequential machines, formal
languages and in certain applications relating to computer arithmetic such as multiplication.

A monoid in addition to being a semigroup, also satisfies the identity property. Monoids are
used in a number of applications, but most particularly in the area of syntactic analysis and
formal languages.

Groups are monoids which also possess the inverse property. The application of group theory

is important in the design of fast adders and error correctin g codes.
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13.2 SEMIGROUPS

Definition: An n-ary operation is a mapping f: X"—X and n is called the order of the operation.

For n=1, f: X—X is called a unary operation. For n=2 it is called a binary operation.

Definition: Let X be a set and f: Xx X—X be a mapping. Then fis called a binary operation on X.
A binary operation is denoted by the symbol *.

For x, y € X, if x*y € X, then * is a binary operation.

Properties of Binary Operation:

> A binary operation * is said to be associative if for every x, y, z € X, i.e., (x*y)*z=x*(y*z)

» Let * be a binary operation on X. If there exists an element e € X such that a*e = e*a = a,
VYae X, then e is called the identity element.

> Let * be a binary operation on X with the identity e. If there exists an element a' € X such
that a*a = a'*a = e, then @' is called the inverse element of a.

> A binary operation * is said to be commutative if for every x, y € X, x*y=y*x.

Definition: A non-empty set G together with an associative binary operation * is called a
semigroup. It is denoted by (G, *). In other words, (G, *) is called a semigroup if for all a, b, ¢ €
G, (a * b)*c = a*(b*c).

Example 1: Let the binary operation * be defined by x*y= xy on the set of all integers Z. Show
that (Z, *) is a semigroup.
Solution: We know that Z= {...-2,-1,0, 1, 2....}
For-3,-2,-1€ Z
(-3*-2)*(-1) = 6*(-1)=-6€ Z
-3%(-2%-1)=-3*(2)=6€ Z
Thus, for any x, y, z € Z, (x*y)*z = x*(y*z)

So, the binary operation * is associative
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Thus, (Z, *) is a Semi group.

Example 2: Let the binary operation * be defined by x*y= xy +2y on the set of all real numbers
R.Is (R, *) a semigroup? ‘
Solution: For -2,-3,-4 € R
(-2%-3)%(-4) = ((-2)(-3) + 2(-3))*(-4)
= (6-6)*(-4)
= 0%(-4)
= (0)(-4) + 2(-4)
=0-8
(-2%-3)*(-4) = -8 —---eeemeene ()
(-2)*(-3*-4) = (-2)*((-3) (-4) +2(-4))
= (-2)*(12-8)
= (-2)*(4)
=(-2) (4) + 2(4)
=-8+8
(-2)*(-3*-4) = 0 -----m-mmmm- (2)
From (1) & (2)
(-2*-3)*(-4) # (-2)* (-3*-4)
For x, y, z € R, x*(y*2) # (x*y)*z
So the binary operation * is not associative

Hence (R, *) is not a semi-group.

Example 3: Show that the set of all natural numbers is a semigroup under the binary operation
addition ‘+’.
Solution: We know that the set of all natural numbers is N = {1, 2, 3, ...}
For3,2,1e N
B+2)+1=5+1=6€ N
3+2+1)=3+3=6€e N
Thus, for any x, y, z €N, (x*y)*z = x*(y*z)

So, the binary operation * is associative
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Thus, (N, +) is a Semi group.

13.3 MONOIDS

Definition: A monoid is a semigroup with identity. In other words a non-empty set G, together
with a binary operation * is called a monoid if
(1) * is associative
i. €. (a* b)*c=a*(b¥c), foralla, b,ce G
(i1) 3 an element e € G such that
a*e =e*a=a, Vae G
Example 4: Show that the set of all integers is a monoid under ordinary multiplication *.”
Solution: We know that Z={...,-2,-1,0, 1, 2, ...}
(@) For-3,-2,1€ Z
(-3.-2).1=6.1=6€ Z
(-3).(-2.1)=(-3).(-2)=6€ Z
Thus, for any x, y, z €N, (x*y)*z = x*(y*z)
So, the binary operation * is associative.
(i1) 1 is the identity element
lL.x=xl=x, Vxe Z

Therefore (Z, .) is a monoid.

Example 5: Let Z" denote the set of all positive integers and the binary operation * be defined by
x *y=max{x, y}. Is (Z*, *) a monoid?

Solution: We know that Z" = {1, 2, 3....}

Forx,y, z€ Z

(x* y)*z = (max {x, y})*z

(x * y) *z =max {x,y,z} >(1)

x*(y*z) = x*(max{y, z})

x*(y*z) = max{x, y, z}

Hence (x*y)*z = x*(y*z)
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So the binary operation * is associative
Now le Z" acts as identity element
Forxe Z', 1* x=max {1,x} =x
a*l=max {x, 1) =x
Hence 1 is identity element ¢
Therefore (Z*,*) is a Monoid.

Note: If binary operation is addition +, then 0 is the identity element.

13.4 GROUPS

Definition: A non empty set G together with a binary operation * is called a group if the
following axioms are satisfied.
(1) Associative axiom.
(a*b)*c = a*(b*c) forall a, b,c€ G
(i) Identity axiom.
There exists an element ¢ € G such that
a*e=e*a=a, Yae G
(iii)  Inverse axiom.
For each a € G, there exists a” € G such that

3 £
a%¥a =a Ta=eg

Commutative group:
A group (G, *) is called commutative (abelian)
if a*b = b*a Y abe G.

Example 6: Show that the set of all integers is an abelian group under addition ‘+’.
Solution: We know that Z={...,-2,-1,0, 1,2, ...}

(i) For-3,-2,1€ Z
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(B3 (2))+1=(-5)+1=-4€ Z
(3)+((2+ D =(-3)+(-1)=-4€ Z
Thus, forany x, ¥, 2€Z, (x + y W z=x+ (y +2)
So, the binary operation + is associative.
(ii) O is the identity element

O+x=x+0=x, V x€ Z

(iii) For any x € Z, there exists an element-x € Z such that
x+ (-x ) =(-x) + x=0.
(iv)Forx,yeZ, x+y=y+x.

Therefore (Z, +) is an abelian group.

Example 7: Show that the set of all positive integers is not a group under ordinary
multiplication.
Solution: We know that Z" = {1, 2,3, ...}
(i) For any x, y, z €Z", (x.y).2 = x.(y.2)
So, the binary operation . is associative.

(i1) 1 is the identity element

l.x=xl=x, YVxeZ.
(iii) For 2 € Z*, Y2 does not belong to Z".

Thus for any x€ Z* with x#1, 1/xgZ".

So, inverse axiom is not satisfied.

Therefore (Z', .) is not a group.

Example 8: Show that the set of all non-zero real numbers R is an abelian group under the
binary operation * defined by a * b =ab/2.
Solution:
(i)  Forany x, y, z €R, (x*y)*z =(xy/2)*z=xyz/4.
x*(y*2)=x*(yz/2)=xyz/4.
Hence (x*y)*z = x*(y*2).

So, the binary operation * is associative.
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(ii) 2€ R is the identity element
For, 2* x =2x/2=x.
x*2=x2/2=x, ¥ x€R.

(iii) If x€ R, then 4/x is the inverse of x.
For, x*4/x=x(4/x)/2=2
4/x*x=(4/x)x/2=2.
Therefore (R, *) is a Group.
For any x, y€ R, x*y=xy/2=yx/2=y*x.
Therefore the binary operation * is commutative.

Thus (R, *) is an abelian group.

Theorem 13.1:
If (G, *) is a group, then
(1) The identity of G is unique.
(2) For each ac G, a'is unique.
(3) (a'])'l= a,forae G.
@) @b)y'=b"*a".
Proof:
(i) If possible, let ¢; and e; be two identities of G.
If ) is the identity then e; * e; = e; * e2=€2
If e, is the identity then e; * e; =¢; ¥ e1= ¢
Le=e 1 ¥ey=e)
Soep=e

(ii) Suppose a and b are two inverses of c. Let e be the identity of G. Then,

b = b*e, by identity law
b = b* (c*a), by (1)
b = (b*c)* a, by associative law

=e ¥ a, by (2)
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= a, by identity law.

(iii) Now,
(@Y'*a'=e [By definition]
(@ "*a"y*a = e*a [By multiplying on the right by a
(a")‘]*(a"*a) = [By associative and identity axioms]
(@Y'*e=a [By inverse axiom]
(@)'=a [By identity axiom]

- Inverse of @’ is a.

(iv) Let a, b€ G. Let a™ and b"' be inverses of a and b.

Consider,

(a*b) * (b'*a™") = a*(b*(b'*a™"))  [By associative axiom]
= a*((b*b")*a™) [By associative axiom]
= a*(e*a") [By inverse axiom]
= a*a’ [By identity axiom]
=e [By inverse axiom]

o (a*b)' = b *a!

Theorem 13.2: If a, b, c are elements of a group G, then

i) ab = ac implies b = ¢ (left cancellation law)
ii) ba = ca implies b = ¢ (right cancellation law)
Proof:

i) Suppose that ab = ac
Multiplying on the left by a’', we get

a'(ab) = a’(ac)

(a'a)b = (a"a)c [By associative axiom]
(e)b = (e)c [By inverse axiom]
b=c [By identity axiom]

ii) Suppose that ba = ca
Multiplying on the right by a™', we get
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(ba)a™ = (ca)a’

b(aa'l) = c(aa’") [By associative axiom]
b(e) = c(e) [By inverse axiom]
b=c [By identity axiom]

Theorem 13.3: If @ and b are elements of a group G, then

i) The equation ax = b has a unique solution in G
i) The equation ya = b has a unique solution in G.

Proof: (i) We observe that a(ab) = (aa’)b = eb = b
So, x = a’'b is a solution of ax = b.
To prove the uniqueness, let x; and x; be two solutions of the equation ax =b.
Thus, ax;= b and ax; = b.
So, ax; = ax;
X1 = Xz, by left cancellation law.
Hence, the equation ax = b has a unique solution.
(ii) Similarly, we observe that (ba)a = b(a"'a) = be = b
So, y = ba’' is a solution of ya = b.
To prove the uniqueness. let y; and y; be two solutions of the equation ya = b.
Thus, yia = b and y,a = b.
So, yia = yza.
¥1= ¥2, by right cance !:1 on law.

Hence, the equation ya = b h-: 1 2nique solution.

Example 9: Let Z be set of &1 iniegers with the binary operation * defined by a*b=a+ b + | for
a, be Z. Then show that (Z, " ' is 'n abelian group.
Solution: For a, b, c € Z, (¢ "hy'~ = (a+b+1)*c
={a+b+1)+c+ 1
= a+b+c+2.
%) = at(b+e+l)

= o+(bte+])+1
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= a+b+c+2
& (a*b)*c = a*(b*c)
~. * is associative.
Let ee Z be such that e*a=a

=e+a+l=a

-~ Identity of (Z, *) is -1

For ae Z, let be Z be the inverse of a, then
a*b = -1
=a+b+1=-1
=>b=-a-2
-~ Inverse of a is —a-2
Also,a*b=a+b+ 1
=b+a+1
= b *q

~.(Z, *) is an abelian group.

13.5 SOLVED PROBLEMS

1. Determine whether the set G = {1, w, w?), where w is the cube root of unity forms a group
under multiplication.

Solution: The multiplication table for G is given by

X 1 w w’
1|1 wo W
w | w w* 1
wo | w 1 w
Table 13.1

All the entries in the table belong to the set G. Therefore closure axiom holds.
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For a€ G, a*1 =1* a = a. Therefore 1 is the identity element.

2are 1, w?,w respectively.

Inverse of 1, w, w
All the entries are symmetric with respect to the diagonal. Therefore the commutative
axiom is satisfied.

Thus (G, X) is an abelian group.

2. Let G = {1,-1}. Determine whether G is a group under .multiplication of real numbers.

Solution: Construct the multiplication table,

X | -1

1 [ -1

B -1 1
Table 13.2

Clearly from the table,
(1) ‘x’ is associative.
(ii) 1 is the identity element

(iii) The inverse of 1 is itself; -1 is the inverse of itself.

Hence, (G, X) is a group.

3. Istheset {1, 2, 3,4, 5} a group under addition modulo 6?

Solution: Construct the addition table,

+6 1 2 3 4 5

1 2 3 - 5 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 0 | 2 3

- 0 1 2 3 4
Table 13.3

From the table, given composition is not binary, as 5+ 1 =0 but Og {1, 2, 3, 4, 5}.

Therefore the given set is not a group.
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a0
4. Let G= {O OJ ra#0e R}. Is G a group under matrix multiplication?

Solution: Let A = (g g), B= (g g) eG witha, b#0in R.
Consider,
AB:(g g)(g g) - "g’ 8)e G as ab £0.

Therefore G is closed w.r.t. matrix multiplication.

Similarly matrix multiplication is associative.

({1) g) is the identity element. For ((1) 8) (g g) = (g g) for any (g g)in i

Consider, (g g) (; 8) = ((1) \ g

(5 0)=( o

=ax=lx= 1

.'.(1/ . 0) is the inverse of (a 0)

0 0 0 0
Also,AB:(aob g)= bg‘ g)=BA

~. G is an abelian group.

5. If (G,*) is an abelian group, then for all a, be G show that (a*b)"=a"*b".
Solution: We prove the result by induction on n.

If n=1, then (a*b)'=a*b [trivial]

If n=2, then (a*b)*= (a*b)*(a*b)

= a*(b*a)*b [By associative axiom]
= a*(a*b)*b [G is abelian]

= (a*a)*(b*b) [By associative axiom]
_ 22

Result is true for n=2.
We assume that the result is true for n=m.
ie. (a*b)"=da"* p"

Consider ,
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(a#b)ln-i-l:(a*b)m sk (a*b)

=(a"* b"™) * (a*b) [By the assumption]
=(d" * b™) * (b*a) [G is abelian]

=a"* (b" * b)*a [By associative axiom]
=a"* (b"™") * a

=a"* (b™*q) [By associative axiom]
=a"*(a*b"™") [G is abelian]

=(d"*a)*b"™*" [By associative axiom]
="l

.. Result is true for n=m+1. Thus by induction result is true for all n.

6. Show that in a group (G,*), if for a, b€ G, (a*b)*=a’*b" then (G,*) must be abelian.
Solution: Given: (a*b)? = a**b®

= (a*b) * (a*b) = (a*a)*(b*b)

= a*(b*a)*b = a*(a*b)*b [By associative axiom]

= b%a = a*h, [By cancellation law]

.. G is abelian.

7. Show that if every element in a group is its own inverse, then the group G must be abelian.

Solution: Let a, be G = abe G

We have, a=a™, b=b", ab:(ab)" [Given: Every element is its own inverse]
=a'=e,b=c, (ab)2=e

Consider, (4:.?.b)2 — 7

= (ab).(ab)=e

= a(ba)b=¢ [By associative axiom]
= a(a(ba)b)b= aeb [Multiplying by a on the left and by b on the right]
= (aa)(ba)(bb) = ab [By associative axiom]

= d*(ba)b® = ab
= e(ba)e=ab
. ba=ab

.. G is abelian.
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13.6 SUMMARY

A binary operation is a rule that assigns to each ordered pair of elements of a set, a unique
element of it.

A non-empty set together with an associative binary operation is called a semigroup.

A monoid is a semigroup with identity.

A non empty set together with a binary operation is called a group if it satisfies associative,
identity and inverse axioms.

Properties of a group: If (G, *) is a group, then

(1) The identity of G is unique.

(2) For each a€ G, a'is unique.

3) (;a")'lz a forae G.

@) (a*b)' =b" *a’.

Theorem: If a, b, ¢ are elements of a group G, then
i) ab = ac implies b = ¢ (left cancellation law)
ii) ba = ca implies b = c (right cancellation law)

Theorem: If a and b are elements of a group G, then

i) The equation ax = b has a unique solution in G
ii) The equation ya = b has a unique solution in G.
13.7 KEYWORDS

Semigroup, monoid, group..

13.8 QUESTIONS

1. Define xxy =x-y on the set of all +ve integers. Is * a binary operation?
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2. Show that the set N of natural numbers is a semigroup under the operation x*y=max{x,
y}. Is it a monoid?

3. Let S be a finite set and P(S) be the power set of S. Determine whether (P(S),@ is a
semigroup or a monoid.

4. Determine whether (Z',*) where x*y=x+y-xy is a semigroup or a monoid.

5. Determine whether the set of even integers with the binary operations x*y:% forms a

semigroup or a monoid.

6. Determine whether the set Z with the binary operation *, ordinary multiplication is a

group.,
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14.0 OBJECTIVES

When you go through this unit, you will be able to

Explain the subgroups and cosets;

v
v" Analyse some theorems on subgroups and cosets;
v Give an account of the Lagrange’s theorem;

v

Fxplain the normal subgroup;

v Analyse some theorems on normal subgroups;

14.1 INTRODUCTION

Application of subgroups is in the construction of computer modules which perform
group operations. Such modules are constructed by joining various subgroup modules that do

operations in subgroups.
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Every subset of a group need not be a subgroup. To find those subsets which can qualify to
become subgroups is an interesting problem. An important relationship exists between the
subgroups and the group itself. This relationship is explained by a theorem known as Lagrange's
theorem. This theorem has important application in the development of efficient group codes

required in the transmission of information.

14.2 SUBGROUP

Definition: A non-empty set H of a group G is called a subgroup if H itself is a group under the
operation defined in G.
Any group G has at least two subgroups namely {e}, the set containing the identity element

e and G itself. These two subgroups are called trivial subgroups.

Examples 1:
> Let G = {1, -1, i, -i}, a multiplicative group. Then H = {1,-1} is subgroup of G.
> Set of all integers Z is a subgroup of the set of all rationals Q under addition.

Theorem 14.1:
A non-empty subset H of a group G is a subgroup of G if and only if

1) a, b € Himplies that ab € H.
2) a € H implies that o™’ € H.

Proof: Let H be subgroup of Gand a, b€ H
Now a € H and be H = ab € H. (by the closure axiom in H, being a subgroup)
Since H is a subgroup, for any ae H=>a™ € H.
Conversely, suppose condition (1) and (2) holds. To prove that H is a subgroup of G, it is
enough to prove that associative and identity axioms hoid in H.
Each element of H is an element of G. Since associative axiom holds good in G, being a

group. Thus associative law holds good for elements of H also.
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Now for any @ € H by condition (2), a'e Handby (1),e=a.a’ € H.
~.e€ H.

.~ H is a group. Since H C G, H is a subgroup of G.

Theorem 14.2: (Necessary and sufficient condition for the subgroup)
A non-empty set H of a group G is subgroup of G, if and only ifa, b e H = ab'e H
Proof: Let H be subgroup of Ganda, b€ H
Since H is a subgroup, for any be H = b'e H.
Nowa € Hand b € H= ab™ € H. (by the closure axiom in H, being a subgroup)
Thus fora,be H=>ab" € H
Conversely, suppose a, b€ H=>ab" € H.
We prove that H is a subgroup of G.
Let a€ H be arbitrary.
Given, a € H,be H= ab'€H.
Choose b=a, thenae H,a€ H=> aa'=e €H.
Therefore identity element exists.
Nowee Hace H=>ea'-a'e H
Hence the inverse of every element of H exists and belongs to H.
Leta,be H=>a€ H,b"' € H.
=a()' eH.
—ab€e H.
Therefore closure axiom is satisfied.
Since the binary operation is associative in G, it is associative in H also.

Thus H is a subgroup of G.

Example 2: Let G = {1,-1, i. -i} be a multiplicative group. Show that H ={1, -1} is a subgroup of
L.
Solution: Clearly HEF and the multiplicative identity 1€ H
Nowi)For1l,-1eH=1(-1)=-1€H.

Forl,leH=1(1)=1€H.
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~.Condition (1) of theorem is satisfied.
ii) 1.1 =1, € the inverse of 1 is 1
(-1).(-1) =1 € the inverse of -1 is -1
foreveryacH ,a'€H
= Condition (2) of theorem is satisfied.

H is a subgroup of G

Example 3: Prove that the set of all integers Z, is a subgroup of set of all rationals Q, under
addition.
Solution: Clearly Z is a subset of Q
The identity element O of Q belongs to Z
Now i) For a, be Z IE] a+beZ
ii) For every a€ Z, there exists -a€ Z such that
a+ (-a) = (-a) + a=0

. By the theorem, Z is a subgroup of Q.

Example 4:
a b a,b,c,de R
LetG =
c d ad—-bc#0
A il S8 then show that
1o 4 ad #0 SRLEER SRS

H is a subgroup of G under multiplication,

d, on

b b,
Conslder AB' = [ 2
o 4o 4,

aa, ab,+bd,
= e H
0 dd,

a b b
Solution: Let A= (0] ' J , B= [az 4 ]be two elements of H.

Since, ajdy # 0 and axd, #0
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= (a1az) (dida)= (a1dy) (azds) #0

For any A= , b eH
0 d

a bY{x ¥ (1 0
0d)lz w) o1
ax+bz ay+bw 1 0
. —
dz dw 01
= ax+bz=1, ay+bw=0, dz=0, dw=1
Now,d#0asad # 0

~.dz=0 =) =0
s.ax+bz=1 = ax=1 =x=l/a

dw=1 =>w=1/d
say+bw=0 = y=-bwla

= -bla(1/d)
y = -blad
Inverse of [a b) is [lla -—b/ad)
0 d 0 1/d

and, ad #0 = l/ad #0

1/a -blad
eH
0 1/d

. H is subgroup.

14.3 COSETS

Definition: Let H be a subgroup of G and a€ G. Then the set, Ha = {ha / heH} is called the right
coset of H generated by a. Similarly the set aH = {ah / heH} is called the left coset of H

generated by a.
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Note: Since eH=H=He, we see that H itself is a right as well as a left coset. If the group
operation is “addition” we define the right coset of H in G by H+a={h+a / h€H}. Similarly for
the left coset of H in G by a +H={a+h / h€EH}. Observe that cosets are not necessarily sub-

groups of G.

Example 5: Let G=(Z,+) be the additive group of integers and H=(2Z, +) the subgroup of even
integers. Find the left cosets of H in G.

Solution:

The left cosets of H in G are,

0+ H ={..., 0+(-2), 0+0, 0+2, ...}={...,-2,0,2, ...} = H.

1+H = {..., 14(-2),1+0, 1+2, ...}={.-..,-3,-1,1,3,... }.

2+H={...,4,-2,0,2,4,6...)=H.

3+H={...,-3,-1, 1,3, ...} and so on.

Notice that 2+H coincides with H., 3+H coincides with 1+H, 4+H coincides with H, 5+H

coincides with 1+H and so on. Hence there are only two distinct left cosets namely H and 1+H.

Example 6: Let G = {1, -1, i, -i} be a multiplicative group and H={1, -1} be a subgroup of G.
Find the right cosets of H in G.
Solution: The right cosets are
Hl={1(1),-1(1)}= {1, -1}=H.
H(-1)={1(-1), -1(-D)}={-1, 1}=H.
Hi={i, -i}.
H(-i) = {-i, i}=HI.
Note:
1) If G is abelian then right and left cosets of G coincide.
2) If a € H, then Ha=H. If a€ G such that a¢ H, then Ha#H.
3) H itself is a right coset and the number of elements in each right coset is the same as the

number of elements in H.
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Theorem 14.3: There is one-to-one correspondence between any two right cosets of a subgroup
H of a group G.
Proof: Let a, be G. Let Ha and Hb be any two right cosets of H in G.

Define f: Ha— Hb by f(ha) = hb ¥V ha € Ha.

fis one-one:
Lethy, h,€EH

Then, ha, hoa € Ha
Now, fiha) = hib, flhaa)=hab.
Suppose fiha) = flha)

= hb=hb

=>h; = hy

=ha = ha.

~ fis one-one .

fis onto:

Let hb € Hb be arbitary.

= h € H , then there exists ha € Ha.
~ f(ha) = hb by the definition of f.
~ fis onto

This proves the theorem.

Theorem 14.4: Let H be a subgroup of G and a, b € G. Then Ha=Hb if and only if ab"@{
Proof: Let Ha=Hb.
Then there exist elements Ajand h; in H such that
hia= hab

hy\(hya) = by (hab)  [By multiplying on the right by A;”']

(' hy)a = (hy ' ho)b

ea = (hl"hz)b

a = (h" )b
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ab™ = [(h " hy)b] b

ab'= (hy ' ha)( bb™)

ab'= (h'hy)e

ab’'= m'hy
Since hy€H, hy”" €H. Also h, e H
hl'lhzeH‘ ab' €H.

Conversely, suppose ab' eHforabeG
Then H=H(ab™) |H=Hh when h € H|
Hb=Hab™'b

=> Ha=Hb.

Theorem 14.5: Any two left (right) cosets of a subgroup are either disjoint or identical.
Proof: Let H be any subgroup of G and let aH and bH be two left cosets of H in G.
Suppose that aH and bH are not disjoint.
Let ce aH N bH. Then,
c€ aH and ce bH.
Then c=ah for some he H and c= bh' for some h'€H.
=ah=bh'
=a=bh'I’"'
Since H is a subgroup, h'h™" € H.
~a=bh, for hy=h'n"".
& aH=(bh))H.
=b(hH)
But, WH=H [because h,e H]
~. aH=bH
Thus, aH N bH = ¢ or aH=bH

Theorem 14.6: Let H be a subgroup of a group G. Then G is equal to the union of all right
cosets of Hin G i.e. G=Ugeqc Ha

Proof: Since G is a group and H is a subgroup, for ac G, Ha C G.
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% Ugec Ha C€G —-mmrmmmmemv (1)
Let x € G be arbitrary.

Then, x.e = x € Hx
“ X € Ugeg Ha
G € Uggg Ha  ~-veeeeeeemm- )
From (1) and (2)
G=Ugeg Ha

Note: Similarly it can be proved that G is also equal to the union of left cosets of H in G.

Coset decomposition:

We have seen that any two left (right) cosets are either disjoint or identical. Also, the union of
all left (right) cosets of a subgroup H of G is equal to G. Hence the set of all left (right) cosets of
a subgroup H constitutes a decomposition of G into mutually disjoint classes. As a matter of fact,
the partition of a group G into mutually disjoint classes known as “cosets” is accomplished by

defining an equivalence relation in G known as Congruence relation.

Relation of congruence modulo a subgroup H in a group G:
Definition: If H is a subgroup of a group G and a, b are two elements of G such that

ab € H. Then we say that a is congruent to b modulo H, and write as a = b mod (H) .

Theorem 14.7: If H is a subgroup of G with @, b € G then a = b mod(H) if and only if ab’
€ H is an equivalence relation.
Proof: The identity element e H (H is a subgroup)
aa'=eecH, fora€g,
Thus a= a(mod H), forae G
= is reflexive.
Suppose a= b(mod H), for a,be G then ab'eH.
(ab)'eH [H is a subgroup]

®Y'a'eH
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ba'eH
=a(mod H), for a, be G.
= is symmetric,
Suppose a=b(mod H), b= c(mod H), for a, b, ccG
ab'eH and bc'e H
(ab™M)(bc") EH [H is a subgroup]

a(b™ b)c' €eH
ac' eH

a=c(mod H)
= is transitive.

= is an equivalence relation.

Definition: The number of distinct left (right) cosets of H in G is called the index of H in G
denoted by [G:H]

14.4 LAGRANGE’S THEOREM

Theorem 14.8: If G is a finite group, and H is any subgroup of G, then the order of H divides the
order of G.
Proof: Let °(G)=n and °(H)=m. We consider the left coset decomposition of G relative to H.

First we show that every left coset af for a € G has exactly m elements.

Let H={hy,ha,...,im}, hi’s are distinct.

Consider aH={ah,, ah, ..., ah,}

ah;’s are distinct , for if ah;= ah; for i # j.

= hi= hj, i # J which is a contradiction.
~ Every left coset aH has exactly m elements.
Since G is finite, the number of left cosets will also be finite. Let k be the number of

distinct left cosets.
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Then, G=a,Hva,HVU..Va.H.

= the number of elements in G is equal to the number of elements in the k cosets. Since
each coset contains m elements and there are k cosets, we get
n =km
i.e. mln.

i.e. o(H)|o(G).

14.5 NORMAL SUBGROUPS

Definition: A subgroup H of a group G is called a normal subgroup of G if and only if for every
x € G and h € H, xhx'€H.

Theorem 14.9: A subgroup H of a group G is normal if and only if xHx'=H,V x € G.
Proof: Suppose that xHx'=H ¥ x € G.

=xHx'c H,Vx€G

Thus for all h € H, xhx'€ H,Vx € G.

~ H is normal.

Conversely, let H be normal,

Then, xHx"' CH ,V X € G----nmeremmmeemeen- (1)

and

'HxY' cH,vx € G

i X "HXC H VX € G-mmmmmmmmmmmmmmmmmmm e (2)
Hence, x(x"H)c)x‘1 cxHx'!
ie. HCxHx'------ -- 3)

From (1) and (3)
xHx'=H ,Vx €G.

Theorem 14.10: A subgroup H of a group G is a normal subgroup iff «ach right coset of Hin G

is a left coset of H in G.
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Proof: Let H be normal subgroup of G.
Then, xHx'=H ¥V x € G.  [By Theorem 2.4.1]
& (xHx")x=Hx = xH =HxVx€G
~ Every left coset is a right coset.
Conversely, let every left coset be a right coset,
ie.xH=HxVx€G
i.e. (xH)x"' = (Hx)x'
i.e. xHx'=H,V x €G.
Therefore H is normal in G. [By Theorem 2.4.1]

Theorem 14.11: The intersection of any two normal subgroup of a group is a normal subgroup.
Proof: Let N; and N, be two normal subgroups of G.
For xeN,NN;and geG.
= xeN, & xeN, ,g€G.
— xg'l € N, and g,,cg'1 eN> ("N, &Nz are normal) .
- Ex g€ NiNN,

N1 N3 is normal.

Theorem 14.12: If G is an abelian group, then every subgroup of G is a normal subgroup.
Proof: Let H be a subgroup of G. Let a[['\G be arbitrary and h€ H.Then ha=ah, so Ha=aH, for

every a[@, which implies that H is a normal subgroup of G.

14.6 SOLVED PROBLEMS

1. If H, & H, are subgroups of G , show that H; ~H, is also a subgroup of G. Show that in
general H, U H, need not be subgroup of G except when H, € Hoor H> CH; .

Solution: Leta,be H nH>.

= a be Hiand a,be H,.

~ab'e Hyandab' € H, [as H, & H, are subgroups].
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. ab'e H\ Hz, Va,be H NH:
- HiNH, is asubgroup.
We now give an example to show that Hy U H> is not a subgroup of G.
Let Hi=2Z ,+), H»=(3Z ,+), G=(Z, +). Then H, and H, are subgroups of G.
Clearly 2€ 2Z and 3€ 3Z
But 3-2 =1 ¢ 2ZU3Z
-, 2Z|J3Z is not a subgroup.
If Hyc H» = H;U H,=H,, asubgroup of G
If H, cH, = H, UH, = H,, a subgroup of G
Suppose that H, \U H,is a subgroup and H; &= H; and H,Z= H,, then
H,¢=H> = 3Ja € H,suchthata ¢ H,
H,¢=H;= 3 be H,such that bg H,
But,a, b € H\U H,
— a-be HiU H, (*+H,U H;is a subgroup)
= a-be Hyor a-beH;
Suppose a-b € Hy, then a-b € H,and ae H,
= a-(a -b) € H;
= b € H,, a contradiction.
Suppose a-b € H; , then a-be Hyand b € H,
= (a-b)+be H,
= a € H,, a contradiction.

~ H\UH, is a subgroup iff Hic H, or Hy CH

2 Find the left cosets of H= {0, 3} in the group ( Zs , +6) -
Solution: Z¢={0,1,2,3,4,5}
Left cosets of H in G are
0+H=H
1+H= {1, 4}
2+H= {2, 5}
3+H= {3,0)
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4+H= (4, 1)

5+H= {5, 2}
. Distinct left cosets of H in G are H, 1+ H, 2+H.

3. Find the left cosets of { Py, Ps, Pg} in the group ( S3, ¢ )

. .12 3 5, 123 1 2 3
Sl)llltlon. S3_ { P] - ( 1 2 3) ) PZ_ (2 1 3) ’ P3 -~ . 1)!
1 2 3 123 ,_ 123

Let H={P\, Ps, Ps)
Now left cosets of H in S3 are,
Py * H ={ P|*P,P\*Ps,P*Pg}
= (P, Ps, Ps} = H
P; *H = {Py*Py, P2*Ps, P*Pg}
= { Py, P3, Py}
P3eH ={P3*Py, P3*Ps, P3*Ps}
={P3, P4, P}
Py*H ={P4*P\, P4*Ps, P4*Ps}
=(P4,P2,P3)
PseH={Ps*Py, Ps*Ps, Ps*Pg}
=(Py, Ps, P1}
Pg*H={Pg.P1, Pg * Ps, Ps *Pg}
={Ps,P1,Ps}
Therefore, the distinct left cosets of H in S; are H, P*H

4. Let (Zs, +) be a group and H={0, 3} be a subgroup. Is H a normal subgroup?

Solution: W.k.t. Zs={0,1,2,3,4,5 }
Left cosets of H in G are
0+H=H
1+H= {14}
2+H= {2,5}
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3+H= {3,0}
4+H= {4,1)
5+H= {5,2}
.. Distinct left cosets of H in G are H, 1+ H, 2+H.
Since (Zs, +) is an abelian group,
a+H = H+a i.e. left coset is equal to right coset.

Thus, H is a Normal subgroup.

14.7 SUMMARY

Definition: Let H be a subgroup of G and a€ G. Then the set, Ha = {ha / heH} is called the right
coset of H generated by a. Similarly the set al = {ah / heH} is called the left coset of H
generated by a.

Theorem: There is one-to-one correspondence between any two right cosets of a subgroup H of a
group G.

Theorem: Any two left (right) cosets of a subgroup are either disjoint or identical.

Theorem: Let H be a subgroup of a group G. Then G is equal to the union of all right cosets of H
in Gie G=Ugeq Ha

Definition: If H is a subgroup of a group G and a, b are two elements of G such that

ab” € H. Then we say that a is congruent to » modulo H, and write as a = b mod (H) .

. Theorem: If H is a subgroup of G with q, bllG then a = b mod(H) if and only if ab'ﬂ_H is an
equivalence relation.

Definition: The number of distinct left (right) cosets of H in G is called the index of H in G
denoted by [G:H].

14.8 KEYWORDS

Coset, subgroup, normal subgroup.

14.9 QUESTIONS




1. Is the set of +ve rationals a subgroup of the group of numbers under the operation of
addition?
Solution: Not a subgroup

2. Let G be the non zero integers under the operation of multiplication and let H={3"| n €
R}.Is H a subgroup of G?

3. Let G=Zg, for each of the following subgroups H of G, determine all the left cosets of H
in G, a) H = {[0],[4]} b) H = {[0],[2],[4],[6]}.

4. Let G be the group of all non zero real numbers under the operation of multiplication and
consider the subgroup H={3"| n € R} of G. Determine all the left cosets of H in G.

5. Let N be a subgroup of group G, Prove that N is a normal subgroup of G if and only if a

'Nam\l for all a€ G.

6. Find the right cosets of H= {0, 3} in the group (Zs , +¢) .
. Let (Zs, +) be a group and H={0, 3} be a subgroup. Is H a normal subgroup?

~
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15.0 OBJECTIVES

When you go through this unit, you will be able to

v" Explain homomorphism and isomorphism;

v" Analyse the procedure to establish isomorphism;

v" Explain an algebraic system with two binary operations;

15.1 INTRODUCTION

The concept of isomorphism shows that two algebraic systems which are isomorphic to one
another are structurally indistinguishable and that the results of operations in one system can be
obtained from those of the other by simply relabeling the names of the elements and symbols for

operations. This concept has useful applications in the sense that the results of one system permit

an identical interpretation in the other system.

The algebraic systems with one binary operation like semigroups, monoids, groups are not

adequate to describe the system of real numbers. We shall therefore consider an abstract
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algebraic system called a ring, which is a special case of a group on which an additional binary
operation satisfying certain properties could be defined. Other algebraic systems with two binary

operations will be obtained by imposing further restrictions on rings.

15.2 HOMOMORPHISM AND ISOMORPHISM

An isomorphism between two mathematical structures of the same type should preserve

the distinguishing features of the structures.

Definition: Let (S, *) & (T, *) be two Semigroups. A mapping@: (8, *) — (T, *) is called a
semigroup homomorphism if ¢ (a * b) =@ (a)* @), ¥V a,be §

Further ¢ is called an isomorphism if ¢ is one-one and onto.

Procedure to establish isomorphism:

To show that the semigroups (§,*) and (7, ) are isomorphic
Stepl: Define a mapping ¢ : S—T with Dom( ¢ )=S.

Step 2: Show that ¢ (a*b)= ¢ (a)* ¢ (b).

Step3: Show that ¢ is one to one.

Step 4: Show that ¢ is onto.

Example 1: Let Z be the set of integers and 2Z be the set of even integers. Show that the
semigroups (Z, +) and (2Z, +) are isomorphic.
Solution: We follow the above procedure to show that (Z, +) and (2Z, +) are isomorphic.

Stepl: Define a function ¢ :Z—2Z by ¢ (a) =2a.
Step 2: We have, ¢ (a + b) =2(a + b)
= 2a+2b
= @(a) +@(b).
Step 3: We show that ¢ is one-one, suppose that ¢ (a;) = ¢ (a;). Then 2a; = 2a3 50 ay=a,.
Step4: We show that ¢ is onto

Suppose that b is any - cn integer
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Then a = b/2€ z and
@ (a) = @ (b/2)=2b/2=b
So ¢ isonto

Hence (Z, +) and (2Z, +) are isomorphic semigroups.

Definition: Let (S, *, es) and (T, ¢, er) be two monoids, where es and ey are identity elements of §
and T with respect to the corresponding binary operations * and * respectively. A mappingg: S

— T'is called a monoid homomorphism if

p@*b)y=@(a)*@(b), ¥ a,be §and

@(es)=er.

Further ¢ is called an isomorphism if ¢ is one-one and onto.

Theorem 15.1: If fis a homomorphism from a commutative semigroup (S, *) onto a semigroup
(T, »), then (T, ¢) is also commutative.
Proof: Let t; and 1, be any elements of 7. Then there exit s; and s; in § with
hi=f(s1) and 1,=f(s>)

Consider,
ety = fls1) * fls2)

= fls1*52)

= flsa*s1)

= fls2) * fls1)

=h*h

Hence, (T, *) is also commutative.

Theorem 15.2: Let (S, *), (T, *) and (V, @) be semigroups and g: S = T & h: T — V be
semigroup homomorphisms. Then (h ¢ g): S —V is a semigroup homomorphism from (S, *) to
V, @).
Proof: Let a,b € S. Then
(h.g) (a*b) = h[g(a*b)]
= h[g(a)*g(b)]
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= h(g(a)) ® h(g(b))
=(hog) (a) ® (hog) (b)

So, (h* g): S —V is a semigroup homomorphism

15.3 GROUP HOMOMORPHISM

Definition: Let (G, *) and (G’, *) be two groups. Then a mapping ¢ :(G, *)—(G’, *) is a group
homomorphism if ¢ (a * b)= @(a)*@(b), Va,bed.

Further ¢ is called an isomorphism if ¢ is one-one and onto.

Theorem 15.3: If ¢ is a homomorphism from a group G into a group G', then
1. @ (e)=¢', where e is the identity in G and ¢' is the identity in G'.

2. ¢ (@)=[p@]™", Vaced.

Proof: 1) Leta € G then ¢ (a) eG.

Consider,
@ (a)e = @ (a) [e'is identity in G']
=g@(a*e) [ e is the identity in G]
= g(a)y@(e) [ @is homomorphism]
Hence, ¢ (e) =e'. [by left cancellation law in G’]

2) Let ae G be arbitrary. Since G is a group a’'€ G and
aa’ =e.
= ¢ (aa')= ¢(e)
= ¢ (@)@ (@)=¢€', [ @ishomomorphism]
L@ (a') is the inverse of G'.

Lle @' =g (@)

Example 2: Let ¢: G — G' be mapping from group G into G', defined by ¢(a) =e¢',VaeG.

Then ¢ is a homomorphism. (' is the identity in Gl)

215



Now for a,b e G

@ (a*b) =e' = ¢'oe!

=g@(a) @)

15.4 KERNEL OF A HOMOMORPHISM

If ¢ : G— G'is a group homomorphism then the set of all elements of G which are

mapped onto the identity of G' is called kernel of ¢ .

ie kerg={xeG/ ¢ (x)=¢€'}

Theorem 15.4: The kernel K of a homomorphism ¢ of G into G' is a normal subgroup of G.
Proof: First we show that K is a subgroup of G.
Fora, b € K, we have ¢ (a) = e‘:qp (b)
Consider,
p @) =9 @*o®)=p@*[p®)]
=el.(e[)-l =i
~.ab” € K.
- K is a subgroup of G.
For a€ K and x€ G,
Consider, ¢ (xax')= @(x)* @ (@)* ¢ (x) [+ ¢ isahomomorphism]
=@ ()e'p () [a€ K]
=g ()¢ &)
=@ (xh [ @ is homomorphism]
=g (=e
- xax' €K

Hence, K is normal in G.

Example 3: The map R*> — R defined by 7 (x, y) = x is a homomorphism and ker 7 = R.

Solution: Consider,
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n[(x1, y1) + (k2. ¥2)] =7 Cotxa, yi+y2)
= x1+X2
=7 (x1, Y1) + 7 (x2, ¥2).
7 is a homomorphism.
Kern ={(x,y) € R*/m(x, y)=0}.
= {(x, y)e R’/x=0}.
={(0,y) € R’} =R.

15.5 ALGEBRAIC SYSTEM WITH TWO BINARY OPERATIONS

Algebraic System:

A set with one or more n-ary operations on the set is called an algebraic system. We denote
an algebraic system by (S, fi, f2, ...) where § is a non-empty set and fi, fo, ... are n-ary operations
on S.

Example 4: Any group (G, *) is an algebraic system consisting of a set G and a binary operation

*

Definition: An algebraic system (S, +, * ) is called a ring if,
(1) (S, +) is an abelian group.
(i1) (S, -) is a semigroup.

(iii)  The operator - is distributive over +, that is for any a, b, c€ §
a(b+c)=ab+ac and

(b+c)a=ba+ca.

Example 5: The set of all integers under operation addition +, and multiplication -, is a ring
called ring of integers.
Solution:

(1) We know that (Z, +) is an abelian group.

(i)  Again, we know that (Z, -) is a semigroup.
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(iii)  Multiplication of integers is distributive with respect to addition of integers i. e.

for anya,b,ce S,

a(b+c)=ab+ac and
(b+c)a=ba+ca.

Therefore (Z, +, -) is a ring.

Special types of rings
Commutative ring: A ring R is commutative if the multiplication operation in R is
commutative, thatis, for all a, b € R, ab=ba

Example: Ring of integers.

Ring with unity element : A ring R is said to be a ring with unity element if R has a
multiplicative identity, i.e. if there exist an element in R denoted by 1 such that

l'a=a'l=a VaceR
Example: (i) Set of all rational numbers

(i) Ring of integers.

Ring with zero divisors: A ring R is called a ring with zero divisor if there exist elements a #0,
b #0 in R with ab =0. Then we say that a is zero divisor of b and vice versa
Example: Consider, Zg = {0, 1, 2, 3,4, 5}
Clearly 2#0, 3 #0 € Zg, but 2® 43 =0.
So, 2 is a zero divisor of 3.

Hence Z; is a ring with zero divisor.

Ring without zero divisor: A ring R is called a ring without zero divisor if for any a, b€ R with
ab=0 then either a=0 or b=0.

Example: Ring of integers

Integral domain: An integral domain is a commutative ring with unity which has no zero
divisors.

Example: (Z, +, ), (@, +, ), (R, +, ).

218



Field : A commutative ring with unity in which every non-zero element has the multiplicative

inverse is called a field.

Example: (Q, +, *), (C, +, °).

15.6 SOLVED PROBLEMS

1. Show that the mapping @ :(Z, +) — (2Z, +) defined by ¢ (n)=2n is a homomorphism.

Consider
@ (n+m) = 2(n+m) forn,m € (Z, +)
=2n+2m
= @(n) +@(m).

2. Show that the mapping ¢ : (Z, +)—(2Z ,+) defined by ¢ (n)=2n is an isomorphism.
Solution: For n, me Z = n+me 7.
@ (n+m)=2(n+m)
=2n+2m
= @)+ ¢(m)

<. @ is a homomorphism.

If p)=¢() forx,yez.
=>2x=2y
= x=Yy

.. ¢ is one — one.

For each y € 2Z, we can find an element y/2€ Z such that
0 (12)=y |
S @ is onto

Hence ¢ is an isomorphism.
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3. Determine whether the mapping ¢ : (R, +)—(R", x) defined by ¢ (x)=€" is an isomorphism.
Solution:
Forx, ye R
Px+y)=e™=e"&
=¢x). ¢

.~ @is a homomorphism.

IfoX=90©®
e=e :
= £.¢ 7=l
= ¢ =]
= x-y=0
= x=y

“. @ is one-one.

For any ye (R *, x), 3 loge’ € R such that ¢ (log.”) =¢*"=y .
~. @ is onto. |

. @is an isomorphism.

15.7 SUMMARY

Let (S, *) & (T, *) be two semigroups. A mapping@: (S, *) — (7, *) is called a semigroup
homomorphism if ¢ (a * b) =@ (a)* @), V a,be §
Further ¢ is called an isomorphism if q; is one-one and onto.
Theorem: Let (S, *), (7, *) and (V, @) be semigroups and g: § — T & h: T — V be semigroup
homomorphisms. Then (k* g): S —V is a semigroup homomorphism from (S, ) to(V, @).
Theorem: If ¢ is a homomorphism from a group G into a group G', then

1. ¢ (e)= e', where e is the identity in G and ¢! is the identity in G'.

2. ¢ (@)=[e@]",Vaet.
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Definition: If ¢ : G — G' is a group homomorphism then the set of all elements of G which are
mapped onto the identity of G' is called kernel of @ _

Definition: A set with one or more n-ary operations on the set is called an algebraic system.
Definition: An algebraic system (S, +, * ) is balled a ring if,

(iv) (S, +) is an abelian group.

(v) (S, -) is a semigroup.

(vi)  The operator - is distributive over +.

15.8 KEYWORDS

Homomorphism, isomorphism, algebraic system.

15.9 QUESTIONS

1. What are the steps to be followed to check whether 2 semigroups (S,*) and (7.*) are
isomorphic. Show that (Z, +) and (7, *) are isomorphic , where Z is the set of all even
integers.

2. Let G be a group and let a be a fixed element of G. Then show that the functionf: G—= G
defined by _)‘(x):a.m:z'l , where .\ﬂ_ﬁ, is an isomorphism.

3. Let (S,*) and (7,*) be monoids with identities e and e respectively, Let f: §— T be an
isomorphism. Then prove that fle)= e'.

4. Let G be a group under addition and G' be a group under multiplication. Let f: G - G
be defined by flix)=¢". Show that fis an isomorphism.

5. Let (S1.*) , (S2*'), and (S,*'") be semigroups and let f: Si [[}S2 and g : Sa [[}Ss be
isomorphisms. Show that gof : S IES-* is an isomorphism.

6. Prove that the set of all reals, rationals, complex numbers forms a ring under usual
addition and multiplication.

7. Prove that set M, of all nxn matrices is a ring with respect to the addition and
multiplication of matrices when the elements in matrices are numbers which are members

of any ring of numbers.
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16.0 OBJECTIVES

When you go through this unit, you will be able to

NS RS

Explain the Group codes;
Differentiate between encoding and decoding functions;
Analyse the procedure of detecting errors in communication;

Analyse the procedure of correcting errors in communication

16.1 INTRODUCTION

Error-detection and correction techniques have become increasingly important in the desi gn of
computer systems. Most systems contain telephone and communication lines which cause
transmitted messages to be corrupted by the presence of noise. Peripheral equipment associated

with such systems is by far the most unreliable component of these systems and both error
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detection and error correction are frequently performed. Algebraic structures have been the basis
of the most important codes which have been designed.
Communication plays an important role. It takes place in a variety of ways. The three

essential parts in an ideal communication system are transmitter, channel and receiver.

Channel Receiver

A

Transmitter

Fig 16.1

In practice, the transmission channel may suffer disturbances, which are called noise, due to
weather interference, electrical problems and so on. The important task of a communication
system is to minimize the errors in transmission.

A device used to improve the efficiency of communication channel is an encoder.

Decoder is a device used to transform the encoded message into original form.

A

Transmitter [—™ Encoder Channel Decoder Receiver

3

Noise

Fig 16.2

16.2 ENCODING FUNCTION

Message: Message is a basic unit of information. It is a finite sequence of characters from a finite
alphabet.

Word: Let B= {0, 1} be the alphabet we choose. Every symbol, we want to transmit 1s
represented as a sequence of m elements from B. Thus, word is a basic unit of information and is

a sequence of m 0’s &1’s.

224



The set B is a group under the binary operativn + mod2.
A group structure can be given to the set of all words, that is, binary strings of length m.

Let B" =BxBXB...xB (m factors) is a group under the operation @ defined by
(xlv Xyssnsy xm) @ ()’l. ¥2,... --JFm)=(Xl+)’|, JC2+}’2, seey xm"'ym)-

i) For (x1, X2,.-.» Xm)s (V15 ¥2,-....Ym) EB",

(X1, X200 200y Xon) D (V1 Y2000 eeYm) = (141, X24Y2, ooy XintYm) € B
(B™, @) satisfies closure axiom.

ii) (B"™, @) satisfies associative axiom.
iii) 0=(0,0,0...,0) is the identity element.
iv) Every element is its own inverse.
Hence (B", ®) is a group.
Note:

1) An element in B" is written as (by, b,..., by) or simply as by by ... by,

2) B" has 2" number of elements.

Definition: An (m, n) encoding function is a one to one function e: B" —B" with n>m. For every

b € B" there exists a distinct e(b) € B™ called the codeword representing b.
Definition: Let e be an encoding function. We say that the code word x=e(b) has been
transmitted with k or fewer errors if the received message x, and x differ in at least one but no

more than k positions.

Definition: Let e: B"— B"be an (m, n) encoding function. We say that e detects k or fewer errors

if whenever x=e(b) is transmitted with k or fewer errors, then x;is not a code word.

Definition: If x € B", then the number of 1’s in x is called the weight of x and is denoted by |x].

225



Example 1: Find the weight of each of the following words in B’:a) x=010001 b) x= 1110000 c)
x=0000000 d) x=1111111.
Solution: a) |x|=2 b)|x|=3 ¢) |x|=0 d)|x|=7

Example 2: Parity check code: The following encoding function e: B" — B"™! is called the
parity (m, m+1) check code:
If b=b,.by,...by€ B™ define e(b)= by,ba,...by b

{0 if | b| iseven

where b1 =b |, =
Lif|b| isodd

m+l

To illustrate this encoding function, let m=2, Then,
2(00)=000, ¢(01)=011, e(10)=101, e(11)=110
Let m=2, Then e:B*— B’
B*={00,01,10,11}
To find the elements in B
B*= 0 if |b| is even

1 if |blis odd
Weight of the word 00 = |00|=0, even, so ¢(00)=000
Weight of the word 01 = |01|=1, odd, so e(01)=011
Weight of the word 10 = |10}=1, odd, so ¢(10)=101
Weight of the word 11 = |11|=2, even, so e(11)=110
The code words in B are {000,011,101,110}
Let m=3, Then e: B>— B*
B’= {000,001,010,011,100,101,110,111}
For b € B* Bs= 0if |b|is even

1 if |lis odd

e(000)=0000, e(001)=0011, e(010)=0101
e(011)=0110, e(100)=1001, e(101)=1010
e(110)=1100, e(111)=1111
The code words in B* are {0000, 0011, 0101, 0110, 1001, 1010, 1 100, 1111}

Parity (m, 3m) check code
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Consider the encoding function e:B™—B™ If b=(by, by,..., b,) € B" . Define e(b) =
e(b[,bz,...b,,,)i' b;bz...bm b|b2...bm b|b2...bm .

Example 3: Determine the code words for the parity check code (m, 3m) where m=2,
Solution: We know that, B*={00,01,10,11}

Code words

¢(00)= 000000

e(10)=101010

¢(01)=010101

e(1)=111111

16.3 HAMMING DISTANCE

Definition: Let x and y be words in 2™ The hamming distance H(x, y) between x and y is the
weight, [x® y| of x® y. Thus the distance between x= x1x3...X,, and y=y1y,...yn is the number of

positions in which x and y differ.

Example 4: Find the Hamming distance between x and y.
a) x=000101, y=010110.

b) x=110110, y=001100.

Solution: a) x® y = 010011, so x® y}=3.
b) x® y = 111010, so |x® y|=4.

Theorem 16.1: (Properties of Distance Function)
Let x, y and z are the elements of B". Then,

a) H(x,y)=H(y, x)

b)H (x,y)=0

¢) H(x, y)=0if and only if x = y.

d) H(x,y) <H(x, 2) + H(z, y)
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Proof:
a) Letx,ye B" sox = (x1, X2,+.0, Xm) and y = (y1, Y2u....... s Ym)
H(x,y)= |x®y]|
= | (X1, Xoseves Xen) B (31, 30500y Vi) |
= | 1Dy, x2D ya.iiy X D@ Y |
=|y1 @ x1, 20 x2, ..., YD Ay |
=|y®x|

b) H(x,y)= |x @ y| is the distance between x = xj x2...x,, and y = y1 ¥2... ym. Such that x; #
yi. i.e., the number of positions in which x and y differ. Since x;, y;€ {0,1}, -

H(xy) = |x®y|>0

= H(x,y)=0
c)If x;=y;
Let x;, y; € {0} then | x®y|=](0,0,.....,0) ® (0,0, ..., 0) |
=(0,0,...,0) |
=0.
= H(x ) =0.

Let x;, y;€ {1} then
| x®y | =1, 1, ..., ® (1, 1, ...,1) | using mod 2 addition

=(0,0,...,0) |
=1{).
= Hx,y»)=0.
d) For x and y in B",

|x®y|< |x| @]y
If z € B", then z ® z = O, the identity element in B".
H(x,y)=|x®y|
- =|x® 0 @y]
=|x® z(—Bz@y|
<|x®z|+|z®y]
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H(x, y) < H(x, z) + H(z, y)
Minimum distance: o

The minimum distance of an encoding function ¢ : B" —B" is the minimum of the distances
between all distinct pairs of code words; that is

Min { H(e(x), e(y)) / x,y € B" }

Theorem 16.2: An (mm, n) encoding function e : B" ——>B" can detect k or fewer errors if and
only if its minimum distance is at least k + 1.
Proof: Suppose that the minimum distance between any two code words is at least k+1.
Let be B", and let x = e(b)e B" be the code word representing b. Then x is transmitted and is
received as x,. If x, were a code word different from x, then H(x, x) > k + 1, so x would be
transmitted with k+1 or more errors. Thus, if x is transmitted with k or fewer errors, then x,
cannot be a code word. This means that e can detect k or fewer errors.

Conversely, suppose that the minimum distance between code words is r < k, and let x
and y be code words with H(x, y) = r. If x, =y, that is, if x is transmitted and is mistakenly
received as y, then r < k errors have been committed and have not been detected. Thus it is not

true, that ¢ can detect k or fewer errors.

16.4 GROUP CODES

Definition: An (m, n) encoding function e : B" —B" is called a group code if

e(B") ={e(b)/b € B"} = Ran(e) is a subgroup of B".

Theorem 16.3: Let e: B" —B" be a group code. The minimum distance of e is the minimum
weight of a non-zero code word.

Proof: Let m be the minimum distance of the group code and let m =H(x, y), where x and y are
distinct code words. Let n be the minimum weight of a non-zero code word and suppose that n =
|z], for a code word z.

Since, ¢ is a group code, x®y is a non-zero code word.
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Thenm=H(x,y)=x@y|>n ... (1)

Since the identity element O and z are distinct code words.
n=kl=z®0|=Hz 0)>m ... (2)

From (1) and (2), m = n.

Hence, the minimum distance of e is the minimum weight of a non-zero code word.

16.5 DECODING AND ERROR CORRECTION

Consider an (m, n) encoding function e:B"—B". Once the encoded word x=e(b) € B", for b € B",
is received as the word x;, we are faced with the problem of identifying the word b that was the
original message.

An onto function d: B"— B" is called an (n, m) decoding function associated with e if d(x,)=b’
€ B"™ is such that when the transmission channel has no noise, then b’=b, that is,
doe=1,,,where 1, is the identity function on B". The decoding function d is required to be
onto so that every received word can be decoded to give a word in B™. It decodes properly
received words correctly, but the decoding of improperly received words may or may not be

correct.

Decoding functions:
1) Let d: B™'— B" be a (m+1, m) decoding function. If b=b,bsbs....hubme1 € B ™', then
d(b)=bbybs.....b,. If there is no error, then
(deoe)b) =d(e(b)
=d(x)
=b.

doe=1 s
2) Let d: B*">B™ be a (3m, m) decoding function.

Then, for y = y1, ¥2...Yms Yme1+-Y2ms Y2ms1+--Y3m-

d(y) = 21 22... Zm Where
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7, =

£y

Lif {¥;s Yiems Yisam } has at least twol's
0 if { ¥, Yiems Yisam } has less than twol's.

That is, the decoding function d examines the i™ digit in each of the three blocks transmitted.

*

The digit that occurs at least twice in these three blocks is chosen as the decoded i" digit.

Maximum Likelihood Technique:
Given an (m, n) encoding function e: B"—B", we often need to determine an (n, m)
Decoding function d : B'— B" associated with e. The maximum likelihood technique is to
determine the decoding function d for a given e.

Since. B" has 2" elements, there are 2" code words in B™ we first list that the code words
in fixed order:

X( ”.,xm, ........... x(Zm)

If the received word is x,, we compute H(x “, x;) for 1 <i <2" and choose the first code
word, say it is x*, such that.

Min{H(x",x,)}=H(x",x,)

1<i<2"

That is, x'* is code word that is closest to x, and the first in the list. If x*= e(b),we define
the maximum likelihood decoding function d associated with e by d(n /. Observe that d
depends on the particular order in which the code words in e(B™) are listed. If the code words are
listed in a different order, we may obtain a different maximum likelihood decoding function d

associated with e.

Theorem 16.4: Suppose that e is an (m, n) encoding function and d is a maximum likelihood
decoding function associated with e. Then (e, d) can correct k or fewer errors if and only if the
minimum distance of e is at least 2k+1

Proof: Assume that the minimum distance of e is at least 2k+1.

Let b € B" and x = e(b) € B™. Suppose that x is transmitted with k or fewer errors, and x, is
received. This means that H(x, x,;) <k. If z is any other code word, then

2k+1 < H(x, z) < H(x, x;) + H(x,, 2) <k + H(x,, 2).
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Thus H(x,, z) > 2k + 1- k = k + 1. This means that x is the unique code word that is closest to x;,

so d(x;)=b. Hence (e, d) corrects k or fewer errors.

Conversely, assume that the minimum distance between code words is r <2k, and let x =
e(b) and x'= e(b ) be code words with H(x, x ) =y Lot x=bibobs hn X -—bl'bz ...b,". Then b;
# by’ for exactly r integers, i between 1 and n. Assume, that by # by’, ba # by’, ..., b, # b,’, but b;
=b;’, wheni>r.
(a) Suppose that r < k. If x is transmitted as x= x', then r <k errors have been committed but
d(x)= b'; so (e, d) has not corrected the r errors.
(b) Suppose that k+1<r <2k and let
y=b1" by".... b’ biar....bn
If x is transmitted as x=y, then H(x, x') = r — k <k and H(x, x) > k.
Thus, x' is at least as close to x; as x is, and x! precedes x in the list of code words: so d(x;)

# b. Then we have committed & errors, which (e, d) has not corrected.

16.6 SOLVED PROBLEMS

1. Consider the (2, 3) parity check code. For each of the received words, determine whether an
error will be detected a) 010 b) 110 ¢) 001 d) 110

Solution: Parity check code is e: B— B

a) Received word=010 € B

Word=01 € B

Weight of 01 =|01]=1, odd. So, e(01)=011=code word

Since 010# 011, the received code word is not equal to the code word. Hence, an error detected.

b) Received word=110 € B
Word= 11 € B
Weight of 11 =|11|=2, even. So, e(11)=110=code word

Since 110=110, the received code word is equal to the code word. Hence, no error detected.

¢) Received word=001 € B
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Word= 00 & B’
Weight of 00 =|00|=0, even .So, ¢(00)=000=code word

Since 001+ 000, the received code word is not equal to the code word. Hence, an error detected.

d) Received word=100 € B’
Word= 10 € B?
Weight of 10 =|10}=1, odd. So, e(10)=101=code¢ word

Since 100+ 101, the received code word is not equal to the code word. Hence, an error detected.

2. Consider the (m,3m) encoding function, where m=2, for each of the received words, determine
whether an error will be detected a) 010100 b)1010101 ¢)111011 d)111111.

Solution: The encoding function is e: B*— B°

a) Received word =010100

e(01)=010101 # 010100

The received code word is not equa! to the code word. |

Hence error detected.

b) Received word =101010

e(10)=101010=101010

The received code word is equal to the code word.

Hence error cannot be detected.

3. (i) Find the minimum distances of the (2, 5) encoding function e: B*—B’ defined by
€(00)=00000, e(10)=00111, e(01)=01110, e(11)=11111.

(i1) How many errors will e detect?

Solution: (i). H (e(00), ¢(10))=|0000000111|=|00111}=3.

H (e(00), (01))=|0000001110|=|01110|=3.

H (e(00), e(11))=/00000®11111|=|11111]=5.

H (e(10), €(01))=/00111®01110}=/01001|=2.

H (e(10), e(11))=|00111®11111}=|11000}=2.

H (e(01), e(11))=/01110©11111}=|10001|=2.
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Minimum distance= min{3, 3, 5, 2, 2, 2}=2.

(ii). The minimum distance of e is 2. By Theorem 4.3.3, we have 2 2 k+1 or k < 1. Thus the code

can detect one error.

4. Show that the (2, 5) encoding fun tion e : B> B’ defined by e(00)=00000, e(01)=01110,
€(10)=10101, e(11)=11011 is a vioup ca v '
Solution:- Let N = {00000, 01110, 1010 11011}.

Let a = 00000, b =01110, ¢ = 10101 = 11011.
@ a b c d
a a b ¢ c
b b a d
c c d a b
d d c b a
Table 16.1

The identity element a = 00000 of B’ belongs to N.
From the table (N, @) is closed.

Every element is its own inverse.

So, the encoding function is a group code.

5. Let d be the (4, 3) decoding function determine d(y) for the word y € B
(a) y=0110 (b)y=1011

Solution: a) y=0110
By definition of (m+1, m) decoding function,
d(b)=by, by, b3..convinannnnnnn.. by bys1 € By Where m=3
d(b) = by, by, by where b = d(b) = by, by, b3, bs.
So d(y) = d(0110) where y = 0110 € B*
d(y) =011
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b) d(y) = d(1011)
d(y) = 101

6. Let d be the (6, 2) decoding function. Determine d(y) for the word y=111011 in B®.
Solution: y=111011
The received word y has 3 equal blocks like
y=11 10 11
B, B, B;

To find z;, compare the first digits of B,, B, and Bs.
First digit of By is 1
First digit of By is 1
First digit of Bz is 1
So, first digit of By, B, and Bj has at least two 1's. Hence, first digit of zis 1.

To find z;

Second digit of By is 1

Second digit of B, is 0

Second digit of B3 is 1

So, second digit of By, B, and Bj has at least two 1’s
Hence, second digitof zis 1

Since z = z;22, z=11.

d(111011) =11

7.let e:B>>B’ be an encoding function defined by (00)=00000, e(01)=01110, e(10)=10101,
¢(11)=11011. Decode the following words relative to a maximum likelihood decoding function.
(a) 11110 (b) 10011

Solution: Let x"’=00000, x*=01110, x*=10101, x*=11011

(a) Let x,=11110

H(x", x,)=|100000}+|111101| =[11110}]=4

H(x? x,)=[101110}+|111101|=/1100001|=1
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H® x)=|110101[+|111101|=|1010111}=3
H(x® x,)=111011]+]111101}=[1001011]=2.
-So, minimum (H(x” x,)) = min{4,1,3,2}=1
Therefore,(H(x'" x,)) = min(h(x),x,))
So, X9 = x@ = ®
29 =01110 =

Thus, maximum likelihood encoding word is b=01.

b)Let x,=10011
H(x'"" x,)=|00000+10011|=|10011|=3
H(x® x,)=|01110+10011|=|11101|=4
H(x® x,)=[10101+10011|=]00110}=2
H(x® x,)=|11011+10011|=/01000}=1
S0, minimum (H(xm,x,))=min{3,4,2,1 1=
Therefore,(H(x"“"x,))=min(H(x'¥ x,))
So, x(-\‘)zx('i) (&

x(s)=11011=€"",

=€

Thus, maximum likelihood decoded word is b=11.

16.7 SUMMARY

Definition: An (m, n) encoding function is a one to one function e¢: B" —B" with n>m. For every
b € B" there exists a distinct e(b) € B™ called the codeword representing b.

Definition: Let e: B"— B"be an (m, n) encoding function. We say that e detects k or fewer errors
if whenever x=e(b) is transmitted with k or fewer errors, then x;is not a code word.

Definition: Let x and y be words in B". The hamming distance H(x, y) between x and y is the
weight, [x® y| of x® y. Thus the distance between x= xix3...X,, and y=y1y2...yn is the number of
positions in which x and y differ.

Definition: The minimum distance of an encoding function e : B" —B" is the minimum of the
distances between all distinct pairs of code words; that is

Min { H(e(x), e(y)) / x,y € B"}
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Theorem: An (m, n) encoding function e : B" —B" can detect k or fewer errors if and only if its
minimum distance is at least k+ 1.

Theorem: Let e: B" —B" be a group code. The minimum distance of e is the minimum weight of
a non-zero code word.

Theorem: Suppose that e is an (m, n) encoding function and d is a maximum likelihood decoding
function associated with e. Then (e, d) can correct k or fewer errors if and only if the minimum

distance of e is at least 2k+1.

16.8 KEYWORDS

Code word, group code, encoding function, decoding function.

16.9 QUESTIONS

1. Consider the (2, 3) parity check code. For each of the received words, determine whether
an error will be detected a) 100 b) 101 ¢) 001 d) 110.

2. Determine the code words for the parity check code (m, 3m) where m=3.

3. Find the minimum distances of the (2, 4) encoding function e: B>~ B* defined by

€(00)=0000, (10)=0011, e(01)=0110, e(11)=1111.

4. Determine whether the (2, 5) encoding function e : B> —B’ defined by e(00)=00000,
e(01)=01110, e(10)=10101, e(11)=11011 is a group code.

5. Let d be the (6, 2) decoding function. Determine d(y) for the word y=101011 in BC.

6. Let e:B>>B° be an encoding function defined by e(00)=00000, e(01)=01110,
e(10)=10101, e(11)=11011. Decode the following words relative to a maximum
likelihood decoding function. (a)11110 (b) 10011.
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